Journal of Mathematical Sciences

, Volume 188, Issue 5, pp 490–550 | Cite as

Linear groups over general rings. I. Generalities

Article

This paper is the first part of a systematic survey on the structure of classical groups over general rings. We intend to cover various proofs of the main structure theorems, commutator formulas, finiteness and stability conditions, stability and prestability theorems, the nilpotency of K1, the centrality of K2, automorphisms and homomorphisms, etc. This first part covers background material such as one-sided inverse, elementary transformations, definitions of obvious subgroups, Bruhat and Gauß decompositions, relative subgroups, finitary phenomena, and transvections. Bibliography: 674 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Abe, “Automorphisms of Chevalley groups over commutative rings,” Algebra Analiz, 5, No. 2, 74–90 (1993).Google Scholar
  2. 2.
    E. Artin, Geometrieal Algebra [Russian translation], Nauka, Moscow (1969).Google Scholar
  3. 3.
    A. S. Atkarskaya, “Automorphisms of the group GLn (R), n ≥ 4, over an associative graded ring,” team paper, Moscow State University (2009).Google Scholar
  4. 4.
    V. G. Bardakov, “On factorization of automorphisms of free modules into prime factors,” Izv. RAN, Ser. Mat., 59, No. 2, 109–128 (1995).MathSciNetGoogle Scholar
  5. 5.
    H. Bass, Algebraic K-theory [Russian translation]. Mir, Moscow (1973).Google Scholar
  6. 6.
    H. Bass, J. Milnor, and J.-P. Serre, “Solution of the congruence problem for SLn (n ≥ 3) and Sp2n (n ≥ 2),” Matematika, 14, No. 6, 64–128 (1970); 15, No. 1, 44–60 (1971).Google Scholar
  7. 7.
    V. M. Bondarko, “On the similarity of matrices over residue rings,” in: Collection of Mathematical Works, Naukova Dumka, Kiev (1976). pp. 275–277.Google Scholar
  8. 8.
    8, Z. I. Borewicz and N. A. Vavilov, “Arrangement of subgroups that contain the group of block diagonal matrices in the general linear group over a ring,” Matematika, Izv. VUZ’ov, No. 11, 12–16 (1982).Google Scholar
  9. 9.
    Z. I. Borewicz and N. A. Vavilov, “On the definition of a net subgroup,” Zap. Nauchn. Semin. LOMI, 132, 26–33 (1983).Google Scholar
  10. 10.
    Z. I. Borewicz and N. A, Vavilov, “Arrangernent of subgroups in the general linear group over a commutative ring,” Trudy Mat. Inst. AN SSSR, 165, 24–42 (1984).Google Scholar
  11. 11.
    O. V. Bryukhanov, “Genetics of universal Chevalley groups over some commutative rings,” Mat. Zametki, 57, No. 6, 814–826 (1995).MathSciNetGoogle Scholar
  12. 12.
    N. Bourbaki, Lie Groups and Algebras [Russian translation], Chaps. IV–VI, Mir, Moscow (1972).Google Scholar
  13. 13.
    N. A. Vavilov, “Structure of split classical groups over a commutative ring,” Dakl. Acad. Nauk SSSR, 299, No. 6, 1300–1303 (1988).MathSciNetGoogle Scholar
  14. 14.
    N. A. Vavilov, “Computations in exceptional groups,”’ Vestn. Samar. Univ., No. 7, 11–24 (2007).Google Scholar
  15. 15.
    N. A. Vavilov, Not Quite Naive Linear Algebra. II. Matrix Algebra [in Russian], St. Petersburg (2007).Google Scholar
  16. 16.
    N. A. Vavilov, “Structure of isotropic reductive groups,” Trudy Inst. Matem. NAN Belarusi, 18, No. 1, 1–13 (2010).MathSciNetGoogle Scholar
  17. 17.
    N. A. Vavilov and M. P. Gavrilovich, “An A2-proof of structure theorems for Chevalley groups of types E6 and E7,” Algebra Analiz, 16, No. 4, 54–87 (2004).MathSciNetGoogle Scholar
  18. 18.
    N. A. Vavilov, M. P. Gavrilovich, and S. I. Nikolenko, “Structure of Chevalley groups: the proof from the Book,” Zap. Nauchn. Semin. POMI, 330, 36–76 (2006).MATHGoogle Scholar
  19. 19.
    N. A. Vavilov and V. G. Kazakevich, “One more variation on the theme of decomposition of transvections,” Vestn. SPIJGU, Ser. 1, No. 3, 71–74 (2008).Google Scholar
  20. 20.
    N. A. Vavilov and V. G. Kazakevich, “Decomposition of transvections for automorphisms,” Zap. Nauchn. Semin. POMI, 365, 47–62 (2009).MathSciNetGoogle Scholar
  21. 21.
    N. A. Vavilov and V. G. Kazakevich, “Some further variations on the decomposition of transvections,” Zap. Nauchn. Semin. POMI, 375, 32–47 (2010).MathSciNetGoogle Scholar
  22. 22.
    N. A. Vavilov and A. Yu. Luzgarev, “An A2-proof of structure theorems for Chevalley groups of type E8,” Algebra Analiz (2011).Google Scholar
  23. 23.
    N. A. Vavilov and S. I. Nikolenko, “An A2—proof of structure theorems for Chevalley groups of type F4,” Algebra Analiz, 20, No. 4, 27–63 (2008).MathSciNetGoogle Scholar
  24. 24.
    N. A. Vavilov and V. A. Petrov, “On overgroups of Ep(2l, R),” Algebra Analiz, 15, No. 3, 72–114 (2003).MathSciNetGoogle Scholar
  25. 25.
    N. A. Vavilov, E. B. Plotkin, and A. V. Stepanov, “Computations in Chevalley groups over commutative rings,” Dolvl. AN SSSR, 40, No. 1, 145–147 (1990).MathSciNetGoogle Scholar
  26. 26.
    N. A. Vavilov and S. S. Sinchuk, “Decompositions of Dennis–Vaserstein type,” Zap. Nauchn. Semin. POMI, 375, 48–60 (2010).MathSciNetGoogle Scholar
  27. 27.
    N. A. Vavilov and S. S. Sinchuk, “Parabolic factorizations of split classical groups,” Algebra Analiz, 23, No. 4, 1–30 (2011).MathSciNetGoogle Scholar
  28. 28.
    N. A. Vavilov and A. K. Stavrova, “The main reductions in the problem of description of normal subgroups,” Zap. Nauchn. Semin. POMI, 349, 30–52 (2007).Google Scholar
  29. 29.
    N. A. Vavilov and A. V. Stepanov, “On subgroups of the general linear group over a ring that satisfies stability conditions,” Izv. VUZ’ov, No. 10, 19–25 (1989).Google Scholar
  30. 30.
    N. A. Vavilov and A. V. Stepanov, “The standard commutation formula,” Vestn. SPbGU, Ser. 1, 1, 9–14 (2008).Google Scholar
  31. 31.
    N, A. Vavilov and A. V. Stepanov, “Overgroups of semisirnple groups,” Vestn. Sarnarsk. Univ., No. 3, 51–95 (2008).Google Scholar
  32. 32.
    N. A. Vavilov and A. V. Stepanov, “On the standard commutation formula once again,” Vestn, SPbGU, Ser. 1, No. 1, 16–22 (2010).MathSciNetGoogle Scholar
  33. 33.
    L. N. Vaserstein, “K1-theory and the congruence problem,” Mat. Zametki, 5, No. 2, 233–244 (1969).MathSciNetGoogle Scholar
  34. 34.
    L. N. Vaserstein, “On stability of the general linear group over a ring,” Mat. Sb., 79, No. 3, 405–424 (1969).Google Scholar
  35. 35.
    L. N. Vaserstein, “Stability of unitary and orthogonal groups over rings with involution,” Mat. Sb., 81, No. 3, 328–351 (1970).MathSciNetGoogle Scholar
  36. 36.
    L. N. Vaserstein, “Stable rank of rings and the dimension of topological spaces,” Fankts. Analiz, 5, No. 2, 102–110 (1971).MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    L. N. Vaserstein, “On the group SL2 over Dedekind rings of arithmetic type,” Mat. Sb., 89, No. 2, 313–322 (1972).MathSciNetGoogle Scholar
  38. 38.
    L. N. Vaserstein, “Stability of classical groups over rings,” Mat. Sb., 93, No. 2, 268–295 (1974).MathSciNetGoogle Scholar
  39. 39.
    L. N. Vaserstein and A. V. Nlikhalev. “On normal subgroups of orthogonal group over rings with involution,” Algebra Logika, 9, No. 6, 629–632 (1970).Google Scholar
  40. 40.
    L. N. Vaserstein and A. A. Suslin, “The Serre problem on projective modules over polynomial rings and algebraic K-theory,” Izv. AN SSSR, Sep. Matem., 40, No. 5, 993–1054 (1976).MathSciNetMATHGoogle Scholar
  41. 41.
    Y. N. Gerasimov, “The group of units of the free product of rings,” Mat. Sb., 134, No. 1, 42–65 (1987).Google Scholar
  42. 42.
    I. Z. Golubchik, “On the general linear group over an associative ring,” Usp. Mat. Nauk, 28, No. 3, 179–180 (1973).MathSciNetGoogle Scholar
  43. 43.
    L. Z. Golubchik, “On normal subgroups of the orthogonal group over an associative ring with involution,” Usp. Mat. Nauk, 30, No. 6, 165 (1975).MathSciNetMATHGoogle Scholar
  44. 44.
    I. Z. Golubchik, “Normal subgroups of linear and unitary groups over rings,” Ph. D. thesis, MGE (1981).Google Scholar
  45. 45.
    1. Z, Golubchik, “On normal subgroups of linear and unitary groups over an associative ring,” in: Spaces Over Algebras and Some Questions of Net Theory, Ufa (1985), pp. 122–142.Google Scholar
  46. 46.
    I. Z. Golubchik, “Isomorphisms of projective groups over associative rings,” Fund. Prikl. Mat., 1, No. 1, 311–314 (1995).MathSciNetMATHGoogle Scholar
  47. 47.
    I. Z. Golubchilc, “On the general linear group over weakly Noetherian associative rings,” Fund. Prikl. Mat., 1, No. 3, 661–668 (1995).Google Scholar
  48. 48.
    I. Z. Golubchik, “Groups of Lie type over PI-rings,” Fund. Prikl. Mat., 3, No. 2, 399–424 (1997).MathSciNetMATHGoogle Scholar
  49. 49.
    I. Z. Golubchik, “Linear groups over associative rings,” Doctoral Thesis, Ufa (1997).Google Scholar
  50. 50.
    I. Z. Golubchik, “An isomorphism of the group GL2(R) over an associative ring R,” in: Collection of Scientific Works, lzd. Baslikir. GPU, Ufa (2003), pp. 21–34.Google Scholar
  51. 51.
    I. Z. Golubchik and A. V. Mikhalev, “Epimorphisms of projective groups over associative rings,” in: Algebra, MGU (1982), pp. 34–45.Google Scholar
  52. 52.
    I. Z. Golubchik and A. Y. Nlikhalev, “Generalized group identities in classical groups,” Zap. Nauchn. Semin. LOMI, 114, 96–119 (1982).MATHGoogle Scholar
  53. 53.
    I. Z. Golubchik and A. V. Mikhalev, “lsomorphisms of the general linear group over an associative ring,” Vestn. Mosk. Univ., Ser. 1, No. 3, 61–72 (1983).MathSciNetGoogle Scholar
  54. 54.
    I. Z. Golubchik and A. V. Mikhalev, “lsomorphisms of unitary groups over associative rings,” Zap. Nauchn. Semin. LOMI, 132, 97–109 (1983).MathSciNetGoogle Scholar
  55. 55.
    I. Z. Golubchik and A. V. Nlikhalev, “On the group of elementary matrices over Pl—rings,” in: Investigations in Algebra, Tbilisi (1985), pp. 20–24.Google Scholar
  56. 56.
    D. Yu. Grigoriev, “On the relationship between the rank and the multiplicative complexity of a bilinear form over a commutative Noetherian ring,” Zap. Nauchn. Semin. LOMI, 86, 66–81 (1979).Google Scholar
  57. 57.
    J. Dieuclonné, Geometry of Classical Groups [Russian translation], Mir, Moscow (1974).Google Scholar
  58. 58.
    K. Kh. Zakiryanov, “A criterion of the occurrence in the subgroup generated by two—dimensional elementary matrices,” Algebra Logika, 22, No. 5, 489–503 (1983).MathSciNetGoogle Scholar
  59. 59.
    K. Kh. Zalciryanov, “Finiteness of the width of symplectic groups over rings of algebraic numbers relative to elementary matrices,” Algebra Logika, 24, No. 6, 667–673 (1985).Google Scholar
  60. 60.
    K. Kh. Zakiryanov, “On a property for polynomial rings over a discrete valuation ring,” Izv. VUZ’ov, No. 2, 74–90 (1992).Google Scholar
  61. 61.
    A. E. Zalessky, “Linear groups,” in: Progress in Science, Fundamental Directions, VINITI (1989), pp. 114–228.Google Scholar
  62. 62.
    E. I. Zelmanov, “Isomorphisms of general linear groups over associative rings,” Sib. Mat. Zhurn., 26, No. 4, 49–67 (1985).MathSciNetGoogle Scholar
  63. 63.
    A. S. Ismagilova, “A homomorphism of the group GL2(R),” Fund. Prikl. Mat., 11, No. 3, 95–108 (2005).Google Scholar
  64. 64.
    A. S. Ismagilova, “Isomorphisms of unitary groups over rings,” Fund. Prikl. Mat., 12, No. 2, 55–70 (2006).MathSciNetGoogle Scholar
  65. 65.
    I. S. Klein and A. V. Mikhalev, “The orthogonal Steinberg group over a ring with involution,” Algebra Logika, 9, No. 2, 145–166 (1970).CrossRefGoogle Scholar
  66. 66.
    I. S. Klein and A. V. Mikhalev, “The unitary Steinberg group over a ring with involution,” Algebra Logika, 9, No. 5, 510–519 (1970).CrossRefGoogle Scholar
  67. 67.
    P. Cohn, Free Rings and Their Relations [Russian translation], Mir, Moscow (1975).Google Scholar
  68. 68.
    V. I. Kopeiko. “Stability of symplectic groups over a polynomial ring,” Mat. Sb., 106, No. 1, 94–107 (1978).MathSciNetGoogle Scholar
  69. 69.
    V. I. Kopeiko, “On a Suslin’s theorem,” Zap. Nauchn. Semin. LOMI, 132, 119–121 (1983).MathSciNetGoogle Scholar
  70. 70.
    V. I. Kopeiko, “On the structure of the symplectic group of polynomial rings over regular rings of dimension ≤ 1,” Usp. Mat. Nauk, 47, No. 4, 193–194 (1992).MathSciNetGoogle Scholar
  71. 71.
    V. I. Kopeiko, “On the structure of the symplectic group of plynomial rings over a regular ring,” Fund. Prikl. Mat., 1, No. 2, 545–548 (1995).MathSciNetGoogle Scholar
  72. 72.
    V. I. Kopeiko, “On the structure of the special linear group over Laurent polynomial rings,” Fund. Prikl. Mat., 1, No. 4, 1111–1114 (1995).MathSciNetGoogle Scholar
  73. 73.
    V. I. Kopeiko, “Symplectic: groups over Laurent polynomial rings and patching diagrams.” Fund. Prikl. Mat., 5, No. 3, 943–945 (1999).MathSciNetGoogle Scholar
  74. 74.
    A. Yu. Luzgarev and A. K. Stavrova, “Perfectness of the elementary subgroup of an isotropic reductive group,” Algebra Analiz, 23, No. 5, 140–154 (2011).MathSciNetGoogle Scholar
  75. 75.
    J. Milnor, Introduction to Algebraic K-Theory [Russian translation], Mir, Moscow (1974).Google Scholar
  76. 76.
    S. V. Nagornyi, “Complex representations of the general linear group of degree 3 modulo a power of a prime number,” Zap. Nauchn. Semin LOMI, 75, 143–150 (1978).MathSciNetGoogle Scholar
  77. 77.
    Yu. P. Nesterenko and A. A. Suslin, “Homology of the general linear group over a local ring and Milnor’s K-theory,” Izu. AN SSSR, Ser. Mat., 53, No. 1, 121–146 (1989).MathSciNetMATHGoogle Scholar
  78. 78.
    G. A. Noskov, “Generators and defining relations of symplectic groups over some rings,” Mat. Zametki. 26, No. 3, 237–246 (1974).MathSciNetGoogle Scholar
  79. 79.
    O. T. O’Meara, “Lectures in linear groups,” in: Automorphisms of Classical Groups, Mir, Moscow (1976), pp. 57–166.Google Scholar
  80. 80.
    O. T. O’Meara, Lectures in Symplectic Groups [Russian translation], Mir, Moscow (1979).Google Scholar
  81. 81.
    O. T. O’Meara. “The general theory of isomorphisms of linear groups.” in: Isomorphisms of Classical Groups Ovr Integral Rings, Mir, Moscow (1980), pp. 58–119.Google Scholar
  82. 82.
    I. A. Panin, “On stability for orthogonal and symplectic algebraic K-theories,” Algebra Analiz, 1, No. 1, 172–195 (1989).Google Scholar
  83. 83.
    A. A. Pashchevskii, “Automorphism groups of net subgroups of linear groups,” Ph. D. Thesis, Leningrad State Univ. (1984).Google Scholar
  84. 84.
    V. M. Petechuk, “Automorphisms of SLn and GLn over some local rings,” Mat. Zametki, 28, No. 2, 187–204 (1980).MathSciNetMATHGoogle Scholar
  85. 85.
    V. M. Petechuk, “Automorphisms of SL3(R) and GLn(R),” Mat. Zametki, 31, No. 5, 657–668 (1982).MathSciNetMATHGoogle Scholar
  86. 86.
    V. M. Petechuk, “Automorphisms of matrix groups over commutative rings,” Mat. Sb., 45, 527–542 (1983).CrossRefGoogle Scholar
  87. 87.
    V. M. Petechuk, “Homomorphisrns of linear groups over commutative rings,” Mat. Zametki, 46, No. 5, 50–61 (1989).MathSciNetMATHGoogle Scholar
  88. 88.
    V. M. Petechuk, “Stability structure of linear groups over rings,” Dopovidi NAN Ukrainy, No. 11, 17–22 (2001).Google Scholar
  89. 89.
    V. M. Petechuk, “Stability of rings,” Nauk. Visnik Uzhgorod. Un-tu, 19, 87–111 (2009).MATHGoogle Scholar
  90. 90.
    V. A. Petrov, “Odd unitary groups,” Zap. Nauchn. Semin. POMI, 305, 195–225 (2003).Google Scholar
  91. 91.
    V. A. Petrov, “Overgroups of classical groups,” Ph. D. Thesis, SPb. State Univ. (2005).Google Scholar
  92. 92.
    V. A. Petrov and A. K. Stavrova, “Elementary subgroups of isotropic reductive groups,” Algebra Analiz, 20, No. 4, 160–188 (2008).MathSciNetGoogle Scholar
  93. 93.
    J.-P. Serre, “The congruence subgroup problem for SL2,” Matematika, 15, No. 6, 12–45 (1971).Google Scholar
  94. 94.
    R. Steinberg, Lectures in Chevalley Groups [Russian translation], Mir. Moscow (1975).Google Scholar
  95. 95.
    A. V. Stepanov, “The ideal stable rank of rings,” Vestn. LGU, No. 3, 46–51 (1986).Google Scholar
  96. 96.
    A. V. Stepanov, “Stable rank and stability of arbitrary rows,” Usp. Mat. Nauk, 48, No. 2, 243–244 (1987).Google Scholar
  97. 97.
    A. V. Stepanov, “Stability conditions in the theory of linear groups over rings,” Ph. D. Thesis LGU (1987).Google Scholar
  98. 98.
    A. V. Stepanov, “A ring of finite stable rank is not necessarily Dedekind finite,” Dokl. AN SSSR, 36, No. 2, 301–304 (1988).MATHGoogle Scholar
  99. 99.
    A. V. Stepanov, “Description of subgroups of the general linear group over a. ring with the help of stability conditions,” in: Rings and Linear Groups, Krasnodar (1988), pp. 82–91.Google Scholar
  100. 100.
    A. V. Stepanov, “On normal structure of the general linear group over a ring,” Zap. Nauchn. Semin. POMI, 236, 166–182 (1997).Google Scholar
  101. 101.
    A. A. Suslin, “On a Cohn’s theorem,” Zap. Nauchn. Semin. LOMI, 64, 127–130 (1976).MathSciNetMATHGoogle Scholar
  102. 102.
    A. A. Suslin, “On stably free rnodules,” Mat. Sb., 102, No. 4, 479–492 (1977).MathSciNetCrossRefGoogle Scholar
  103. 103.
    A. A. Suslin, “On the structure of the special linear group over a polynomial ring,” Izv. AN SSSR, Ser. Mat., 41, No. 2, 235–253 (1977).MathSciNetMATHGoogle Scholar
  104. 104.
    A. A. Suslin, “Reciprocity laws and the stable rank of a polynomial ring,” Izv. AN SSSR, Ser. Mat., 43, No. 6, 1394–1425 (1979).MathSciNetMATHGoogle Scholar
  105. 105.
    A. A. Suslin, “Hornology of GLn, characteristic classes, and the Milnor K-theory,” Trudy Mat. Inst. AN SSSR, 165, 188–204 (1984).MathSciNetGoogle Scholar
  106. 106.
    A. A. Suslin and Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings,” Zap. Nauchn. Semin. LOMI, 71, 216–250 (1977).Google Scholar
  107. 107.
    A. A. Suslin and M. S. Tulenbaev, “Stability theorem for the Milnor K2-functor,” Zap. Nauchn. Semin. LOMI 64, 131–152 (1976).MathSciNetMATHGoogle Scholar
  108. 108.
    O. I. Tavgen’, “Finite width of arithmetic Chevalley groups of rank ≥ 2,” Dokl. AN SSSR, 310, No. 4, 802–806 (1990).MathSciNetGoogle Scholar
  109. 109.
    O. I. Tavgen’, “Bounded generation of Chevalley groups over rings of algebraic numbers,” Izv. AN SSSR, Ser. Matem., 54, No. 1, 97–122 (1990).Google Scholar
  110. 110.
    S. Tazhetdinov, “Subnormal structure of two-dimensional linear groups over rings close to fields,” Algebra Logika, 24, No. 4, 414–425 (1985).MathSciNetCrossRefGoogle Scholar
  111. 111.
    S. Tazhetdinov, “Subnormal structure of symplectic groups over local rungs,” Mat. Zametki, 36, No. 2, 289–298 (1985).MathSciNetGoogle Scholar
  112. 112.
    S. Tazhetdinov, “Normal structure of symplectic groups over rings of stable rank 1,” Mat. Zametki, 39, No. 4, 512–517 (1986).MathSciNetGoogle Scholar
  113. 113.
    S. Tazhetdinov, “Subnormal structure of two-dimensional linear groups over 6-primitiye rings,” Mat. Zametki, 52, No. 4, 99–105 (1992).MathSciNetGoogle Scholar
  114. 114.
    S. Tazhetdinov, “Subnorrnal structure of symplectic groups over (2,3)-full rings,” Sib. Mat. Zhurn., 34, No. 6, 165–169 (1993).MathSciNetGoogle Scholar
  115. 115.
    S. Tazhetdinov, “Subnormal structure of two-dimensional linear groups over full rings,” Mat. Zametki, 71, No. 6, 924–930 (2002).MathSciNetCrossRefGoogle Scholar
  116. 116.
    S. Tazhetdinov, “Structure of subnormal subgroups of symplectic groups over local rings,” Sib. Mat. Zhurn., 47, No. 3, 665–669 (2006).MathSciNetMATHGoogle Scholar
  117. 117.
    S. Tazhetdinov, “On subnormal subgroups of linear groups,” Sib. Mat. Zhurn., 49, No. 1, 218–223 (2008).MathSciNetGoogle Scholar
  118. 118.
    M. S. Tulenbaev, “The Schur multiplier of the group of elementary matrices of finite order,” Zap. Nauchn. Semin. LOMI, 86, 162–169 (1979).MathSciNetMATHGoogle Scholar
  119. 119.
    M. S. Tulenbaev, “The Steinberg group over a polynomial ring,” Mat. Sb., 45, No. 1, 139–154 (1983).MathSciNetCrossRefMATHGoogle Scholar
  120. 120.
    C. Faith, Algebra: Rings, Modules, and Categories [Russian translation], I, Mir, Moscow (1977).Google Scholar
  121. 121.
    J. E. Humphreys, Arithmetic Groups [Russian translation], Mir, Moscow (1983).Google Scholar
  122. 122.
    S. G. Khlebutin, “Sufficient conditions for normality of the group of elementary matrices,” Usp. Mat. Nauk, 39, No. 3, 245–246 (1984).MathSciNetMATHGoogle Scholar
  123. 123.
    S. G. Khlebutin, “Some properties of the elementary subgroup,” in: Algebra, Logic, and Number Theory, Izd, MGU, Moscow (1986), pp. 86–90.Google Scholar
  124. 124.
    E. Abe, “Whitehead groups of Chevalley groups over polynomial rings,” Comm. Algebra, 11, No. 12, 1271–1308 (1983).MathSciNetCrossRefMATHGoogle Scholar
  125. 125.
    E. Abe, “Chevalley groups over commutative rings,” in: Proceedings of the Conference on Radical Theory, Sendai (1988), pp. 1–23.Google Scholar
  126. 126.
    E. Abe, “Normal subgroups of Chevalley groups over commutative rings,” Contemp. Math., 83, 1–17 (1989).CrossRefGoogle Scholar
  127. 127.
    E. Abe, “Automorphisms of Chevalley groups over commutative rings,” St. Petersburg Math. J., 5, No. 2, 74–90 (1993).Google Scholar
  128. 128.
    E. Abe, “Chevalley groups over commutative rings. Normal subgroups and automorphisms,” Contemp. Math., 13–23 (1995).Google Scholar
  129. 129.
    E. Abe and J. Morita, “Some Tits systems with affine Weyl groups in Chevalley groups over Dedekind domains,” J. Algebra, 115, 450–465 (1988).MathSciNetCrossRefMATHGoogle Scholar
  130. 130.
    E. Abe and K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 28, No. 1, 185–198 (1976).MathSciNetCrossRefMATHGoogle Scholar
  131. 131.
    H. Abels, “Finite presentability of S-arithmetic groups. Compact presentability of solvable groups,” Lecture Notes Math., 1261, Springer-Verlag (1987).Google Scholar
  132. 132.
    H. Abels, “Finiteness properties of certain arithmetic groups in the function field case,” Israel J. Math., 76, 113–128 (1991).MathSciNetCrossRefMATHGoogle Scholar
  133. 133.
    P. Abramenko, “Über einige diskret normierte Furiktionenringe, die keine GE2-Ringe sind,” Archiv Math., 46, 233–239 (1986).MathSciNetCrossRefMATHGoogle Scholar
  134. 134.
    P. Abramenko, “Endlichkeitseigenschaften der Gruppen SLn \( \left( {{{\mathbb{F}}_q}\left[ t \right]} \right) \),” Thesis Univ. Frankfurt (1987).Google Scholar
  135. 135.
    P. Abramenko, “Finiteness properties of Chevalley groups over \( {{\mathbb{F}}_q}\left[ t \right] \),” Israel J. Math., 87, 203–223 (1994).MathSciNetCrossRefMATHGoogle Scholar
  136. 136.
    P. Abramenko, “Twrin buildings and applications to S-arithmetic groups,” Lecture Notes Math., 1641, Springer-Verlag (1996).Google Scholar
  137. 137.
    P, Abrarrienko, “Finiteness properties of groups acting on twin buildings,” in: Groups: Topological, Combinatorial, and Arithmetic Aspects, London Math. Soc. Lecture Notes, 331, Cambridge Univ. Press (2004), pp. 21–26.Google Scholar
  138. 138.
    P. Abramenko, “On finite and elementary generation of SL2(R),” arXiv:0808.1095v1, 1–20 (2008).Google Scholar
  139. 139.
    A, N. Acharya, “A note on a stability theorem of the general linear group,” J. Indian Math. Soc., 39, No. 1–4, 51–68 (1975).MathSciNetMATHGoogle Scholar
  140. 140.
    S. I. Adian and J. Mennicke, “Bounded generation of SLn \( \left( \mathbb{Z} \right) \),” Int. J. Algebra Comput., 2, No. 4, 357–365 (1992).MathSciNetCrossRefMATHGoogle Scholar
  141. 141.
    R. Alperin, “SL2 \( \left( {\mathbb{Z}\left[ {{{{1+\sqrt{5}}} \left/ {2} \right.}} \right]} \right) \),” Duke Math. J., 47, No. 3, 487–509 (1980).MathSciNetCrossRefMATHGoogle Scholar
  142. 142.
    R. Alperin, “Homology of PSL2 \( \left( {\mathbb{Z}\left[ \omega \right]} \right) \),” Comment. Math. Helv., 55, 364–377 (1980).MathSciNetCrossRefMATHGoogle Scholar
  143. 143.
    R. Alperin, “Normal subgroups of PSL2 \( \left( {\mathbb{Z}\left[ {\sqrt{-3 }} \right]} \right) \),” Proc. Amer. Math. Soc., 124, No. 10, 2935–2941 (1996).MathSciNetCrossRefMATHGoogle Scholar
  144. 144.
    R. Alperin and D. Wright, “K2(2, k[T, T -1]) is generated by ‘symbols’”, J. Algebra, 59, No. 1, 39–46 (1979).MathSciNetCrossRefMATHGoogle Scholar
  145. 145.
    J. B. An and X.-P. Tang, “The structure of symplectic groups over semilocal domains,” Acta Math. Sinica, New Series, 1, No. 1, 1–15 (1985).MathSciNetCrossRefMATHGoogle Scholar
  146. 146.
    P. Ara and R. R. Goodearl, “Stable rank of corner rings,” Proc. Amer. Math. Soc., 133, No. 3, 379–386 (2004).MathSciNetGoogle Scholar
  147. 147.
    F. A. Arlinghaus and L. N. Vaserstein. “The work of Pere Menal on normal subgroups.” Publicacions Math., 36, 389–400 (1992).MathSciNetCrossRefMATHGoogle Scholar
  148. 148.
    S. Bachmuth and H. Mochizuki, “E2 ≠ SL2 for most Laurent polynomial rings,” Amer. J. Math., 104, 1181–1189 (1982).MathSciNetCrossRefMATHGoogle Scholar
  149. 149.
    A. Bak, “The stable structure of quadratic modules,” Thesis, Columbia Univ. (1969).Google Scholar
  150. 150.
    A. Bak, “Subgroups of the general linear group normalized by relative elementary groups,” Lecture Notes Math., 967, 1–22 (1982).MathSciNetCrossRefGoogle Scholar
  151. 151.
    A. Bak, “Nonabelian K-theory: The nilpotent class of K1 and general stability,” K-Theory, 4, 363–397 (1991).MathSciNetCrossRefMATHGoogle Scholar
  152. 152.
    A. Bak, R. Hazrat, and N. Vavilov, “Localization-completion strikes again: relative K1 is nilpotent by Abelian,” J. Pure Appl. Algebra, 213, 1075–1085 (2009).MathSciNetCrossRefMATHGoogle Scholar
  153. 153.
    A. Bak, R. Hazrat, and N. Vavilov, “Structure of hyperbolic unitary groups. II. Normal subgroups,” Algebra Colloq. (2011).Google Scholar
  154. 154.
    A. Bak, V. Petrov, and Guoping Tang, “Stability for quadratic K1,” K-Theory, 30, No. 1, 1–11 (2003).MathSciNetCrossRefMATHGoogle Scholar
  155. 155.
    A. Bak and U. Rehmann, “The congruence subgroup and metaplectic problem for SLn≥2 of division algebras,” J. Algebra, 78, 475–547 (1982).MathSciNetCrossRefMATHGoogle Scholar
  156. 156.
    A. Bak and A. Stepanov, “Dimension theory and nonstable K-theory for net groups,” Rend. Sem. Mat. Univ. Padova, 106, 207–253 (2001).MathSciNetMATHGoogle Scholar
  157. 157.
    A. Bak and Guoping Tang, “Stability for hermitian K1,” J. Pure Appl. Algebra, 150, No. 2, 109–121 (2000).MathSciNetCrossRefGoogle Scholar
  158. 158.
    A. Bak and N. Vavilov, “Normality for elementary subgroup functors,” Math. Proc. Cambridge Phil. Soc., 118, No. 1, 1–18 (1995).MathSciNetCrossRefGoogle Scholar
  159. 159.
    A. Bak amd N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups,” Algebra Colloq., 7, No. 2, 159–196 (2000).MathSciNetCrossRefMATHGoogle Scholar
  160. 160.
    C. Bartolone and F. Bartolozzi, “Topics in geometric algebra over rings,” Rings Geometry, 353–389 (1985).Google Scholar
  161. 161.
    C. Bartolone and A. G. Spera, “Tits’s theorem for the group PGL2(L), L is not necessarily a commutative local ring,” Ann. Mat. Pura Appl., 149, 297–309 (1987).MathSciNetCrossRefMATHGoogle Scholar
  162. 162.
    H. Bass, “The stable structure of quite general linear groups,” Bull. Amer. Math. Soc., 70, No. 3, 430–434 (1964).Google Scholar
  163. 163.
    H. Bass, “K-theory and stable algebra,” Inst. Hautes Études Sel. Publ. Math., No. 22, 5–60 (1964).Google Scholar
  164. 164.
    H. Bass, Lectures on Topics in Algebraic K-Theory, Tata Inst. of Fundam. Research. Bombay (1967).Google Scholar
  165. 165.
    H. Bass, “Some problems in classical algebraic K-theory,” Lecture Notes Math., 342, 3–73 (1973).MathSciNetGoogle Scholar
  166. 166.
    H. Bass, “Unitary algebraic K-theory,” Lecture Notes Math., 343, 57–265 (1973).MathSciNetCrossRefGoogle Scholar
  167. 167.
    H. Bass, “Introduction to some methods of algebraic K-theory,” Conf. Board Math. Sci., 20 (1974).Google Scholar
  168. 168.
    H. Bass and J. Tate, “The Milnor ring of a global field,” Lecture Notes Math., 342, 349–446 (1973).MathSciNetGoogle Scholar
  169. 169.
    R. Basu, R. Khanna, and R. A. Rao, “On Quillen’s local global principle.” Contemp. Math., 390, 17–30 (2005).MathSciNetCrossRefGoogle Scholar
  170. 170.
    R. Basu and R. A. Rao, “Injective stability for K1 of classical modules,” J. Algebra, 323, 867–877 (2010).MathSciNetCrossRefMATHGoogle Scholar
  171. 171.
    E. Bayer-Fluckiger and L. Fainsilber, “Nonunimodular Hermitian forms,” Invent. Math., 123, 233–240 (1996).MathSciNetMATHGoogle Scholar
  172. 172.
    H. Behr, “Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern.” Invent. Math., 7, 1–32 (1969).MathSciNetCrossRefMATHGoogle Scholar
  173. 173.
    H. Behr, “Eine endliche Präisentation der symplektischen Gruppe Sp4 \( \left( \mathbb{Z} \right) \),” Math. Z., 141, 47–56 (1975).MathSciNetCrossRefMATHGoogle Scholar
  174. 174.
    H. Behr, “Explizite Präsentation von Chevalleygruppen über \( \mathbb{Z} \),” Math. Z., 141, 235–241 (1975).MathSciNetCrossRefMATHGoogle Scholar
  175. 175.
    H. Behr, “SL3 \( \left( {{{\mathbb{F}}_q}\left[ t \right]} \right) \) is not finitely presentable,” London Math. Soc. Lecture Notes, 36, 213–224 (1977).MathSciNetGoogle Scholar
  176. 176.
    H. Behr. “Finite presentability of arithmetic groups over global function Helds,” Proc. Edinburgh Math. Soc., 30, 23–39 (1987).MathSciNetCrossRefMATHGoogle Scholar
  177. 177.
    H. Behr, “Arithmetic groups over function fields. I. A complete characterisation of finitely generated and finitely presented arithmetic subgroups of reductive groups,” J. relne angew. Math., 495, 79–118 (1998).MathSciNetMATHGoogle Scholar
  178. 178.
    H. Behr, “Higher finiteness properties of S-arithmetic groups in the function field case. I,” London Math. Soc. Lecture Notes, 331, 27–42 (2004).MathSciNetGoogle Scholar
  179. 179.
    P. Bender, “Eine Präsentation der symplektischen Gruppe Sp(4, \( \mathbb{Z} \)) mit 2 Erzeugenden und 8 definierenden Relationen,” J. Algebra, 65, No. 2, 328–331 (1980).MathSciNetCrossRefMATHGoogle Scholar
  180. 180.
    G. M. Bergman, “Coproducts and some universal ring constructions,” Trans. Amer. Math. Soc., 200, 33–88 (1977).MathSciNetCrossRefGoogle Scholar
  181. 181.
    A. J. Berrick and M. E. Keating, “Rectangular invertible matrices,” Amer. Math. Monthly, 104, No. 4, 297–302 (1997).MathSciNetCrossRefMATHGoogle Scholar
  182. 182.
    M. Bestvina and N. Brady, “Morse theory and finiteness properties of groups,” Invent. Math., 129, 445–470 (1997).MathSciNetCrossRefMATHGoogle Scholar
  183. 183.
    S. Betley, “Homological stability for On,n over a local ring,” Trans. Amer. Math. Soc., 303, No. 1. 413–429 (1987).Google Scholar
  184. 184.
    S. Betley, “Vanishing theorems for homology of GLn R,” J. Pure Appl. Algebra, 58, 213–226 (1989).MathSciNetCrossRefMATHGoogle Scholar
  185. 185.
    S. Betley, “Homological stability for On,n over semi-local rings,” Glasgow Math. J., 32, No. 2, 255–259 (1990).MathSciNetCrossRefMATHGoogle Scholar
  186. 186.
    M. Bhargava, “Higher composition laws. l. A new view of Gauß composition and quadratic generalizations,” Ann. Math., 159, 217–250 (2004).MathSciNetCrossRefMATHGoogle Scholar
  187. 187.
    M. Bhargava, “Higher composition laws. ll. On cubic analogues of Gauß composition,” Ann. Math., 159, 865–886 (2004).MathSciNetCrossRefMATHGoogle Scholar
  188. 188.
    M. Bhargava, “Higher composition laws. III. The parametrization of quartic rings,” Ann. Math., 159, 1329–1360 (2004).MathSciNetCrossRefMATHGoogle Scholar
  189. 189.
    M. Bhargava, “Higher composition laws. IV. The parametrization of quintic rings,” Ann. Math., 167, 53–94 (2008).MathSciNetCrossRefMATHGoogle Scholar
  190. 190.
    M. L. Bolla, “lsomorphism of general linear groups over rings,” J. Algebra, 96, 592–602 (1985).MathSciNetCrossRefMATHGoogle Scholar
  191. 191.
    A, Borel, “On the automorphisms of certain subgroups of semisimple Lie groups,” in: Proceedings of the Bombay Colloquium on Algebraic Geometry (1968), pp, 43–73.Google Scholar
  192. 192.
    A. Borel and J. Tits, “On abstract homomorphisms of simple algebraic groups,” in: Proceedings of the Bombay Colloquium on Algebraic Geometry (1968), pp. 75–82.Google Scholar
  193. 193.
    A. Borel and J. Tits, “Homomorphismes “abstraits” de groupes algébriques semi-simples,” Ann. Math., 73, 499–571 (1973).MathSciNetCrossRefGoogle Scholar
  194. 194.
    J. Brenner, “The linear homogeneous groups. III.” Ann. Math., 71, 210–223 (1960).Google Scholar
  195. 195.
    J. Browkin and J. Hurrelbrink, “On the generation of K 2 \( \left( \mathcal{O} \right) \) by symbols,” Lecture Notes Math., 1046, 29–31 (1982).MathSciNetCrossRefGoogle Scholar
  196. 196.
    E. I. Bunina, “Automorphisms of adjoint Chevalley groups of types Al, Dl, El over local rings,” arXiv:math/0702046, 1–20 (2007).Google Scholar
  197. 197.
    E. I. Bunina, “Automorphisms of Chevalley groups of types B2 and G2 over local rings,” arXiv:math/0711.0531, 1–21 (2007).Google Scholar
  198. 198.
    E. I. Bunina, “Automorphisms of Chevalley groups of type F4 over local rings with 1/2,” J. Algebra, 323, 2270–2289 (2010).MathSciNetCrossRefMATHGoogle Scholar
  199. 199.
    K.-U. Bux and K. Wortman, “A geometric proof that SL2 \( \left( {\mathbb{Z}\left[ {t,{t^{-1 }}} \right]} \right) \) is not finitely presented,” Algebr. Geom. Topol., 6, 839–852 (2006).MathSciNetCrossRefMATHGoogle Scholar
  200. 200.
    K.-U. Bux and K. Wortman, “Finiteness properties of arithmetic groups over function fields,” Invent. Math., 167, 355–378 (2007).MathSciNetCrossRefMATHGoogle Scholar
  201. 201.
    K.-U. Bux, A. Mohammadi, and K. Wortman, “SLn \( \left( {\mathbb{Z}\left[ x \right]} \right) \) is not FPn-1,” Comment. Math. Helv., 85, 151–164 (2010).MathSciNetCrossRefMATHGoogle Scholar
  202. 202.
    Cao Chongguang and Wang Luqun, “Normal subgroups of symplectic groups over rings with one in its stable range,” Acta Math. Sinica, 29, 323–326 (1986).MathSciNetMATHGoogle Scholar
  203. 203.
    D. Carter and G. E. Keller, “Bounded elementary generation of SLn \( \left( \mathcal{O} \right) \),” Amer. J. Math, 105, 673–687 (1983).MathSciNetCrossRefMATHGoogle Scholar
  204. 204.
    D. Carter and G. E. Keller, “Elementary expressions for unimodular matrices,” Commun. Algebra, 12, 379–389 (1984).MathSciNetCrossRefMATHGoogle Scholar
  205. 205.
    D. Carter and G. E. Keller, “Bounded elementary expressions in SL(2, \( \mathcal{O} \)),” Preprint Univ. Virginia (1985).Google Scholar
  206. 206.
    D. Carter and G. E. Keller, “‘The congruence subgroup problem for nonstandard models,” Preprint Univ. Virginia (1985).Google Scholar
  207. 207.
    D. Carter, G, E. Keller, and E. Paige, “Bouncled expressions in SL(2, \( \mathcal{O} \)).” Preprint Univ. Virginia (1985).Google Scholar
  208. 208.
    R. W. Carter and Yu Chen, “Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings,” J. Algebra, 155, 44–94 (1993).Google Scholar
  209. 209.
    J.-L. Cathelineau, “The tangent complex to the Bloch–Suslin complex,” Bull. Soc. Math. France, 135, 565–597 (2007).MathSciNetMATHGoogle Scholar
  210. 210.
    C. Chang, “The structure of the symplectic groups over semi-local domains,” J. Algebra, 35, 457–476 (1975).MathSciNetCrossRefMATHGoogle Scholar
  211. 211.
    C. N. Chang, “Orthogonal groups over semi-local domains,” J. Algebra, 37, 137–164 (1975).MathSciNetCrossRefMATHGoogle Scholar
  212. 212.
    R. Charney, “Homology stability for GLn over a Dedekind domain,” Inv. Math., 56, 1–17 (1980).MathSciNetCrossRefMATHGoogle Scholar
  213. 213.
    R. Charney, “On the problem of homology stability for congruence subgroups,” Comm. Algebra, 12, 2081–2123 (1984).MathSciNetCrossRefMATHGoogle Scholar
  214. 214.
    R. Charney, “A generalization of a theorem of Vogtmann,” J. Pure Appl. Algebra, 44, 107–125 (1987).MathSciNetCrossRefMATHGoogle Scholar
  215. 215.
    P. Chattopadhyay and R. A. Rao, “Elementary symplectic orbits and improved K1-stability,” J. K-theory, 7, No. 2, 389–403 (2011).MathSciNetCrossRefMATHGoogle Scholar
  216. 216.
    Chen Huanyin and Chen Miaosen, “On products of three triangular matrices over associative rings,” Linear Algebra Applic., 387, 297–311 (2004).CrossRefMATHGoogle Scholar
  217. 217.
    Chen Sheng and You Hong, “Subrings in imaginary quadratic fields which are not universal for GE2,” Acta Arithm., 107, No. 3, 299–305 (2003).CrossRefMATHGoogle Scholar
  218. 218.
    Chen Yu, “Isomorphic Chevalley groups over integral domains,” Rend. Sem. Mat. Univ. Padova, 92, 231–237 (1994).MathSciNetMATHGoogle Scholar
  219. 219.
    Chen Yu, “On representations of elementary subgroups of Chevalley groups over algebras,” Proc. Amer. Math. Soc., 123, No. 8, 2357–2361 (1995).MathSciNetCrossRefMATHGoogle Scholar
  220. 220.
    Chen Yu, “Automorphisms of simple Cheyalley groups over \( \mathbb{Q} \)-algebras,” Tôhoku Math. J., 348, 81–97 (1995).Google Scholar
  221. 221.
    Chen Yu, “lsomorphisms of adjoint Chevalley groups over integral domains,” Trans. Amer. Math. Soc., 348, No. 2, 521–541 (1996).MathSciNetCrossRefMATHGoogle Scholar
  222. 222.
    Chen Yu, “Isomorphisms of Chevalley groups over algebras,” J. Algebra, 226, No. 2, 719–741 (2000).MathSciNetCrossRefMATHGoogle Scholar
  223. 223.
    Chen Yu, “Representation of degree two for elementary matrices over rings,” Comm. Algebra, 30, No. 9, 4219–4234 (2002).MathSciNetCrossRefMATHGoogle Scholar
  224. 224.
    Chu Huali, “On the GE2 of graded rings,” J. Algebra, 90, No. 1, 208–216 (1984).MathSciNetCrossRefGoogle Scholar
  225. 225.
    Clin Huali, “The rows of a matrix in E 2 (R[X]),” Chinese J. Math., 12, No. 4, 245–254 (1984).MathSciNetGoogle Scholar
  226. 226.
    P. M. Cohn, “Some remarks on the invariant basis property,” Topology, 5, 215–228 (1966).MathSciNetCrossRefMATHGoogle Scholar
  227. 227.
    P. M. Cohn, “On the structure of GL2 over a ring,” Inst. Hautes Études Sci. Publ. Math., No. 30, 5–53 (1966).Google Scholar
  228. 228.
    P. M. Cohn, “A presentation of GL2 of Euclidean imaginary quadratic number fields,” Mathematika, 15, 156–163 (1968).MathSciNetCrossRefMATHGoogle Scholar
  229. 229.
    P. M. Cohn, “Automorphisms of two-dimensional linear groups over Euclidean domains,” J. London Math. Soc., 1, 279–292 (1969).MathSciNetCrossRefMATHGoogle Scholar
  230. 230.
    P. M. Cohn, “K2 of polynomial rings and of free algebras,” in: Proceedings of the Conference on Ring Theory, Academic Press, N. Y. – London (1972), pp. 117–123.Google Scholar
  231. 231.
    P. M. Cohn and L. Gerritzen, “On the group of symplectic matrices over a free associative algebra,” J. London Math. Soc., 63, No. 2, 353–363 (2001).MathSciNetCrossRefMATHGoogle Scholar
  232. 232.
    G. Cooke and P. J. Weinberger, “On the construction of division chains in algebraic number fields with application to SL2,” Comm. Algebra, 3, 481–524 (1975).MathSciNetCrossRefMATHGoogle Scholar
  233. 233.
    G. Corach and A. R. Larotonda, “Le rang stable de certaines algèbres d’opérateurs,” C. R. Acad. Sci. Paris, Sér I. Mathématique, 296, No. 23, 949–951 (1983).MathSciNetMATHGoogle Scholar
  234. 234.
    D. L. Costa, “Zero-dimensionality and the GE2 of polynomial rings,” J. Pure Appl. Algebra, 50, 223–229 (1988).MathSciNetCrossRefMATHGoogle Scholar
  235. 235.
    D. L. Costa and G. E. Keller, “On the normal subgroups of SL(2,A),” J. Pure Appl. Algebra, 53, 201–226 (1988).MathSciNetCrossRefMATHGoogle Scholar
  236. 236.
    D. L. Costa and G. E. Keller, “On the normal subgroups of GL(2,A),” J. Algebra, 135, 395–226 (1990).MathSciNetCrossRefMATHGoogle Scholar
  237. 237.
    D. L. Costa and G. E. Keller, “Normal subgroups of SL(2,A),” Bull. Amer. Math. Soc., 24, 131–135 (1991).MathSciNetCrossRefMATHGoogle Scholar
  238. 238.
    D. L. Costa and G. E. Keller, “The E(2, A) sections of SL(2, A),” Ann. Math., 134, No. 1, 159–188 (1991).MathSciNetCrossRefMATHGoogle Scholar
  239. 239.
    D. L. Costa and G. E. Keller, “Radix redux: normal subgroups of symplectic group,” J. reine angew. Math., 427, 51–105 (1992).MathSciNetMATHGoogle Scholar
  240. 240.
    D. L. Costa and G. E. Keller, “Abstract radices,” Comm. Algebra, 25, No. 7, 2099–2104 (1997).MathSciNetCrossRefMATHGoogle Scholar
  241. 241.
    D. L. Costa and G. E. Keller, “Power residue symbol and the central sections of SL(2, A),” K-Theory, 15, No. 1, 33–98 (1998).MathSciNetCrossRefMATHGoogle Scholar
  242. 242.
    D. L. Costa and G. E. Keller, “On the normal subgroups of G2(A),” Trans. Amer. Math. Soc., 351, No. 12, 5051–5088 (1999).MathSciNetCrossRefMATHGoogle Scholar
  243. 243.
    R. K. Dennis, “Stability for K2,” Lecture Notes. Math., 353, 85–94 (1973).MathSciNetCrossRefGoogle Scholar
  244. 244.
    R. K. Dennis, “The GE2 property for discrete subrings of \( \mathbb{C} \),” Proc. Amer. Math. Soc., 50, 77–82 (1975).MathSciNetMATHGoogle Scholar
  245. 245.
    R. K. Dennis and M. Krusemeyer, “K2(A[X, Y]/XY), a problem of Swan and related computations,” J. Pure Appl. Algebra, 15, 125–148 (1979).MathSciNetCrossRefMATHGoogle Scholar
  246. 246.
    R. K. Dennis, B. Magurn, and L. N. Vaserstein, “Generalized Euclidean group rings,” J. reine angew. Math., 351, 113–128 (1984).MathSciNetMATHGoogle Scholar
  247. 247.
    R. K. Dennis and M. R. Stein, “The functor K2: a survey of computations and problems,” Lecture Notes Math., 342, 243–280 (1972).MathSciNetGoogle Scholar
  248. 248.
    R. K. Dennis and M. R. Stein, “Injective stability for K2 of local rings,” Bull. Amer. Math. Soc., 80, 1010–1013 (1974).MathSciNetCrossRefMATHGoogle Scholar
  249. 249.
    R. K. Dennis and M. R. Stein, “K2 of discrete valuation rings,” Advances Math., 18, 182–238 (1975).MathSciNetCrossRefMATHGoogle Scholar
  250. 250.
    R. K. Dennis and L. N. Vaserstein, “On a question of M. Newman 0n the number of commutators,” J. Algebra, 118, 150–161 (1988).MathSciNetCrossRefMATHGoogle Scholar
  251. 251.
    R. K. Dennis and L. N. Vaserstein, “Commutators in linear groups,” K-theory, 2, 761–767 (1989).MathSciNetCrossRefMATHGoogle Scholar
  252. 252.
    W. Dicks and B. Hartley, “On homomorplisms between special linear groups over division rings,” Comm. Algebra, 19, 1919–1943 (2001).MathSciNetGoogle Scholar
  253. 253.
    M. H. Dull, “Automorphisms of PSL2 over domains with few units.” J. Algebra, 27, 372–379 (1973).MathSciNetCrossRefMATHGoogle Scholar
  254. 254.
    M. H. Dull, “Automorphisms of the two-dimensional linear groups over integral domains,” Amer. J. Math., 41, 1–40 (1974).MathSciNetCrossRefGoogle Scholar
  255. 255.
    M. J. Dunwoody, “K2 of a Euclidean ring,” J. Pure Appl. Algebra, 7, 563–58 (1976).CrossRefGoogle Scholar
  256. 256.
    W. G. Dwyer, “Twisted homological stability for general linear groups,” Ann. Math., 111, 239–251 (1980).MathSciNetCrossRefMATHGoogle Scholar
  257. 257.
    P. Elbaz-Vincent, “The indecomposable K 3 of rings and homology of SL2,” J. Pure Appl. Algebra, 132, No. 1, 27–71 (1998).MathSciNetCrossRefMATHGoogle Scholar
  258. 258.
    P. Elbaz-Vincent, “Homology of linear groups with coefficients in the adjoint action and K-theory,” K-Theory, 16, No. 1, 35–50 (1999).MathSciNetCrossRefMATHGoogle Scholar
  259. 259.
    E. Ellers and H. Ishibashi, “Factorization of transformations over a local ring,” Linear Algebra. Appl., 85, No. 1, 17–27 (1987).MathSciNetCrossRefMATHGoogle Scholar
  260. 260.
    E. W. Ellers and H. Lausch, “Length theorems for the general linear group of a module over a local ring,” J. Austral. Math. Soc. Ser. A, 46, 122–131 (1989).MathSciNetCrossRefMATHGoogle Scholar
  261. 261.
    E. W. Ellers and H. Lausch, “Generators for classical groups of modules over local rings,” J. Geometry, 39, No. 1–2, 60–79 (1990).MathSciNetCrossRefMATHGoogle Scholar
  262. 262.
    I. V. Erovenko, “SLn(F[x]) is not boundedly generated by elementary matrices: explicit proof,” Electronic J. Linear Algebra, 11, 162–167 (2004).MathSciNetMATHGoogle Scholar
  263. 263.
    I. V. Erovenko and A. S. Rapinchuk, “Bounded generation of some S-arithmetic orthogonal groups,” C. R. Acad. Sci., 333, No. 5, 395–398 (2001).MathSciNetMATHGoogle Scholar
  264. 264.
    I. Y. Erovenko and A. S. Rapinchuk, “Bounded generation of S-arithmetic subgroups of isotropic orthogonal groups over number fields,” J. Number Theory, 119, No. 1, 28–48 (2006).MathSciNetCrossRefMATHGoogle Scholar
  265. 265.
    D. R. Estes and J. Ohm, “Stable range in commutative rings,” J. Algebra, 7, No. 3, 343–362 (1967).MathSciNetCrossRefMATHGoogle Scholar
  266. 266.
    B. Fine and M. Newman, “The normal subgroup structure of the Picard groups,” Trans. Amer. Math. Soc., 302, 769–786 (1987).MathSciNetCrossRefMATHGoogle Scholar
  267. 267.
    D. Flöge, “Zur Struktur der PSL2 über einigen irnaginär-quadratischen Zahlringen,” Math. Z., 183, 255–279 (1983).MathSciNetCrossRefMATHGoogle Scholar
  268. 268.
    T. Fournelle, S. Sidki, and K. Weston, “On algebraic embeddings of rings into groups,” Arch. Math., 51, 425–433 (1988).MathSciNetCrossRefMATHGoogle Scholar
  269. 269.
    M. R. Gabel, “Lower bounds on the stable range of polynomial rings,” Pacific J. Math., 61, No. 1, 117–120 (1975).MathSciNetCrossRefMATHGoogle Scholar
  270. 270.
    M. R. Gabel and A. V. Geramita, “Stable range for matrices,” J. Pure Appl. Algebra, 5, No. 1, 97–112 (1974); Erratum, ibid. 7, 236 (1976).Google Scholar
  271. 271.
    A. S. Garge and R. A. Rao, “A nice group structure on the orbit space of unimodular vectors,” K-Theory, 38, No. 2, 113–133 (2008).MathSciNetCrossRefMATHGoogle Scholar
  272. 272.
    A. S. Garge, “The Steinberg formula for orbit groups,” Expositiones Math., 27, 341–349 (2009).MathSciNetCrossRefMATHGoogle Scholar
  273. 273.
    S. C. Geller, “On the GEn of a ring,” Ill. J. Math., 21, No. 1, 109–112 (1977).MathSciNetMATHGoogle Scholar
  274. 274.
    S. C. Geller and C. A. Weibel, “K1 (A, B, I),” J. reine angew. Math., 342, 12–34 (1983).MathSciNetMATHGoogle Scholar
  275. 275.
    S. C. Geller and C. A. Weibel, “Subgroups of the elementary and Steinberg groups of congruence level I 2,” J. Pure Appl. Algebra, 35, 123–132 (1985).MathSciNetCrossRefMATHGoogle Scholar
  276. 276.
    S. C. Geller and C. A. Weibel, “K1 (A, B, I). II,” K-Theory, 2, 753–760 (1989).MathSciNetCrossRefMATHGoogle Scholar
  277. 277.
    L. Gerritzen, “Symplectic 2 × 2 matrices over free algebras,” Indag. Math., 10, No. 4, 507–512 (1999).MathSciNetCrossRefMATHGoogle Scholar
  278. 278.
    I. Z. Golubchik, “lsomorphisms of the general linear group GLn (R), n ≥ 4, over an associative ring,” Contemp. Math., 131, No. 1, 123–136 (1992).MathSciNetCrossRefGoogle Scholar
  279. 279.
    K. R. Goodearl and P. Menal, “Stable range one for rings with many units,” J. Pure Appl. Algebra, 54, 261–287 (1988).MathSciNetCrossRefMATHGoogle Scholar
  280. 280.
    D. R. Grayson, “SK1 of an interesting principal ideal domain,” J. Pure Appl. Algebra, 20, 157–163 (1981).MathSciNetCrossRefMATHGoogle Scholar
  281. 281.
    Sh. M. Green, “Generators and relations for K2 of a division ring,” Lecture Notes Math., 551, 74–76 (1976).CrossRefGoogle Scholar
  282. 282.
    Sh. M. Green, “Generators and relations for the special linear group over a division ring,” Proc. Amer. Math. Soc., 62, No. 2, 229–232 (1977).MathSciNetCrossRefMATHGoogle Scholar
  283. 283.
    F. J. Grunewald, J. Mennicke, and L. N. Vaserstein, “On symplectic groups over polynomial rings,” Math. Z., 206, No. 1, 35–56 (1991).MathSciNetCrossRefMATHGoogle Scholar
  284. 284.
    F. J. Grunevvald, J. Mennicke, and L. N. Vaserstein, “On the groups SL2 \( \left( {\mathbb{Z}\left[ x \right]} \right) \) and SL2 (K[x, y]),” Israel J. Math., 86, No. 1–3, 157–193 (1994).MathSciNetCrossRefGoogle Scholar
  285. 285.
    F. J. Grunewald and J. Schwermer, “Free non-Abelian quotients ot SL2 over orders of imaginary quadratic number fields,” J. Algebra, 69, 298–304 (1981).MathSciNetCrossRefMATHGoogle Scholar
  286. 286.
    D. Guin, “Stabilité de l’homologie du groupe linéare et K-théorie algébrique,” C. R. Acad. Sci. Paris, 304, 219–222 (1987).MathSciNetMATHGoogle Scholar
  287. 287.
    D. Guin, “Homologie du groupe linéare et K-théorie de Milnor des anneaux,” J. Algebra, 123, No. 1, 27–59 (1989).MathSciNetCrossRefMATHGoogle Scholar
  288. 288.
    S. K. Gupta and M. P. Murthy, “Suslin’s work on linear groups over polynomial rings and Serre problem,” ISI Lect. Notes, 8 (1980).Google Scholar
  289. 289.
    G. Habdank, “A classification of subgroups of Λ-quadratic groups normalized by relative elementary subgroups,” Dissertation Universitat Bielefeld (1987).Google Scholar
  290. 290.
    G. Habdank, “A classification of subgroups of Λ-quadratic groups normalized by relative elementary subgroups,” Adv. Math., 110, No. 2, 191–233 (1995).MathSciNetCrossRefMATHGoogle Scholar
  291. 291.
    U. Hadad, “Uniform Kazhdan constant for some familes of linear groups,” J. Algebra, 318, No. 2, 607–618 (2007).MathSciNetCrossRefMATHGoogle Scholar
  292. 292.
    A. J. Hahn, “On the homomorphisms of the integral linear groups,” Math. Ann., 197, 234–250 (1972).MathSciNetCrossRefMATHGoogle Scholar
  293. 293.
    A. J. Hahn, “lsomorphisms of the integral classical groups and their congruence subgroups,” Amer. J. Math., 97, No. 4, 865–887 (1975).MathSciNetCrossRefGoogle Scholar
  294. 294.
    A. J. Hahn, “Cayley algebras and the automorphisms of PO′8 (V) and PΩ8 (V),” Amer. J. Math., 98, No. 4, 953–987 (1976).MathSciNetCrossRefMATHGoogle Scholar
  295. 295.
    A. J. Hahn, “Cayley algebras and the isomorphisms of the orthogonal groups over arithmetic and local domains,” J. Algebra, 45, 210–246 (1977).MathSciNetCrossRefMATHGoogle Scholar
  296. 296.
    A. J. Hahn, “Isomorphisms theory for orthogonal groups over arbitrary integral domains,” J. Algebra, 51 (1978), 233–287.MathSciNetCrossRefMATHGoogle Scholar
  297. 297.
    A. J. Hahn, “Category equivalences and linear groups over rings.” J. Algebra, 77, No. 2, 505–543 (1982).MathSciNetCrossRefMATHGoogle Scholar
  298. 298.
    A. J. Hahn, “The finite presentability of linear groups.” Contemp. Math., 82, 23–33 (1989).CrossRefGoogle Scholar
  299. 299.
    A. J. Hahn, D. G. James, and B. Weisfeiler, “Homomorphisms of algebraic and classical groups: a survey,” Canad. Math. Soc. Proc., 4, 249–296 (1984).MathSciNetGoogle Scholar
  300. 300.
    A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer, Berlin et al. (1989).Google Scholar
  301. 301.
    R. Hazrat, “Dimension theory and nonstable K1 of quadratic module,” K-theory, 27, 293–327 (2002).MathSciNetCrossRefMATHGoogle Scholar
  302. 302.
    R. Hazrat. V. Petrov, and N. Vavilov, “Relative subgroups in Chevalley groups,” J. K-theory, 5, No. 3, 603–618 (2010).MathSciNetCrossRefMATHGoogle Scholar
  303. 303.
    R. Hazrat, A. Stepanov, N. Vavilov, and Zhang Zuhong, “The yoga of commutators,” Zap. Nauchn. Semin. POMI, 287, 53–82 (2011).Google Scholar
  304. 304.
    R. Hazrat and N. Vavilov, “K1 of Chevalley groups are nilpotent,” J. Pure Appl. Algebra, 179, 99–116 (2003).MathSciNetCrossRefMATHGoogle Scholar
  305. 305.
    R. Hazrat and N. Vavilov, “Bak’s work on K-theory of rings Qvith an appendix by Max Karoubi),” J. K-Theory, 4, No. 1, 1–65 (2009).MathSciNetCrossRefMATHGoogle Scholar
  306. 306.
    R. Hazrat, N. Vavilov, and Zhang Zuhong, “Relative unitary commutator calculus, and applications,” J. Algebra, 343, No. 1, 107–137 (2011).MathSciNetCrossRefMATHGoogle Scholar
  307. 307.
    R. Hazrat, N. Vavilov, and Zhang Zuhong, “Relative Commutator Calculus in Chevalley groups,” J. Algebra, 1–32 (2012) (to appear).Google Scholar
  308. 308.
    R. Hazrat and Zhang Zuhong, “Generalized commutator formula,” Comm. Algebra, 38, No. 4, 1441–1454 (2011).CrossRefGoogle Scholar
  309. 309.
    R. Herman and L. N. Vaserstein, “The stable range of C*-algebras,” Invent. Math., 77, No. 3, 553–555 (1984).MathSciNetCrossRefMATHGoogle Scholar
  310. 310.
    J. A. Hermida-Alonso, “Linear algebra over commutative rings,” in: Handbook of Algebra, 3 (2003), pp. 3 61.Google Scholar
  311. 311.
    A. C. Hibbard, “A new presentation of hyperbolic classical groups over a division ring,” J. Algebra, 165, No. 2, 360–379 (1994).MathSciNetCrossRefMATHGoogle Scholar
  312. 312.
    A. C. Hibbard, “The generation of U2n (R, Λ) and the presentation of O+ 2n (R),” J. Algebra, 172, No. 3, 819–829 (1995).MathSciNetCrossRefMATHGoogle Scholar
  313. 313.
    E. K. Hinson, “Paths of unimodular vectors,” J. Algebra, 142, No. 1, 58–75 (1991).MathSciNetCrossRefMATHGoogle Scholar
  314. 314.
    E. K. Hinson, “Word length in elementary matrices,” J. Algebra, 142, No. 1, 76–80 (1991).MathSciNetCrossRefMATHGoogle Scholar
  315. 315.
    E. K. Hinson, “On Vaserstein’s power operation on elementary orbits,” Comm. Algebra (2011).Google Scholar
  316. 316.
    Hua Lokeng and I. Reiner, “Automorphisms of the unimodular group,” Trans. Amer. Math. Soc., 71, 331–348 (1951).MathSciNetCrossRefMATHGoogle Scholar
  317. 317.
    J. Huebschmann, “Stem extensions of the infinite general linear group and large Steinberg groups,” Lecture Notes Math., 966, 108–111 (1980).MathSciNetCrossRefGoogle Scholar
  318. 318.
    J. E. Humphreys, “On the automorphisms of infinite Chevalley groups,” Canad. J. Math., 21, No. 1, 908–911 (1969).MathSciNetCrossRefMATHGoogle Scholar
  319. 319.
    J. Hurrelbrink, “Endlich präsentierte arithmetische Gruppen und K2 über Laurent-Polynomringen,” Math. Ann., 225, 123–129 (1977).MathSciNetCrossRefMATHGoogle Scholar
  320. 320.
    J. Hurrelbrink, “The elements of K2 \( \left( {{{\mathbb{Z}}_S}} \right) \),” Manuscripta Math., 24, 173–177 (1978).MathSciNetCrossRefMATHGoogle Scholar
  321. 321.
    J. Hurrelbrink, “Endlich präsentierte arithmetische Gruppen im Funktionenkörperfall,” Math. Arm., 225, No. 2, 123–129 (1977).MathSciNetMATHGoogle Scholar
  322. 322.
    J. Hurrelbrink, “On K2 \( \left( \mathcal{O} \right) \) and presentations of SLn \( \left( \mathcal{O} \right) \) in the real quadratic ease,” J. reine angew. Math., 319, 213–220 (1980).MathSciNetMATHGoogle Scholar
  323. 323.
    J. Hurrelbrink, “On the size of certain K-groups,” Comm. Algebra, 10, 1873–1889 (1982).MathSciNetCrossRefMATHGoogle Scholar
  324. 324.
    J. Hurrelbrink, “On presentations of SLn \( \left( {{{\mathbb{Z}}_S}} \right) \),” Comm. Algebra, 11, No. 9, 937–947 (1983).MathSciNetCrossRefMATHGoogle Scholar
  325. 325.
    J. Hurrelbrink and U. Rehmann, “Eine endliehe Präsentation der Gruppe G2 \( \left( \mathbb{Z} \right) \),” Math. Z., 141, 243–251 (1975).MathSciNetCrossRefMATHGoogle Scholar
  326. 326.
    J. Hurrelbrink and U. Rehmann, “Zur endliche Präsentation von Chevalleygruppen über den euklidischen imaginär-quadratischen Zahlringen,” Arch. Math., 27, No. 1, 123–133 (1976).MathSciNetCrossRefMATHGoogle Scholar
  327. 327.
    K. Hutchinson, “A new approach to Matsumoto’s theorem,” K-Theory, 4, No. 2, 181–200 (1990).MathSciNetCrossRefMATHGoogle Scholar
  328. 328.
    K. Hutchinson, “Conditions under which K2 \( \left( {{{\mathcal{O}}_F}} \right) \) is not generated by Dennis–Stein symbols,” Acta Arithm., 89, 189–199 (1999).MathSciNetMATHGoogle Scholar
  329. 329.
    F. Ischebeck, “Hauptidealringe mit nichttrivialer SK1-Gruppe,” Arch. Math., 35, 138–139 (1980).MathSciNetCrossRefMATHGoogle Scholar
  330. 330.
    H. Ishibashi, “Generators of a symplectic group over a local valuation domain,” J. Algebra, 53, No. 1, 125–128 (1978).MathSciNetCrossRefMATHGoogle Scholar
  331. 331.
    H. lshibashi, “Generators of O n(V) over a quasi semiloeal semihereditary domain,” Comm. Algebra, 7, No. 10, 1043–1064 (1979).MathSciNetCrossRefMATHGoogle Scholar
  332. 332.
    H. Ishibashi, “Generators of Spn(V) over a quasi semilocal semihereditary domain,” Comm. Algebra. 7, No. 16, 1673–1683 (1979).MathSciNetCrossRefMATHGoogle Scholar
  333. 333.
    H. Ishibashi, “Generators of U n(V) over a quasi sernilocal semihereclitary domain,” J. Algebra, 60, No. 1, 199–203 (1979).MathSciNetCrossRefMATHGoogle Scholar
  334. 334.
    H. lshibashi, “Generators of Spn(V) over a quasi semilocal semihereditary ring,” J. Pure Appl. Algebra, 22, No. 2, 121–129 (1981).MathSciNetCrossRefMATHGoogle Scholar
  335. 335.
    H. Ishibashi, “Generators of orthogonal groups over valuation rings,” Canad. J. Math., 33, No. 1, 116–128 (1981).MathSciNetCrossRefMATHGoogle Scholar
  336. 336.
    H. Ishibashi, “Structure of O(V) over full rings,” J. Algebra, 75, No. 1, 1–9 (1982).MathSciNetCrossRefMATHGoogle Scholar
  337. 337.
    H. lshibashi, “Involutory expressions of elements in GLn \( \left( \mathbb{Z} \right) \) and SLn \( \left( \mathbb{Z} \right) \),” Linear Algebra Applic. 219, 165–177 (1995).MathSciNetCrossRefMATHGoogle Scholar
  338. 338.
    D. G. James, “Unitary groups over local rings,” J. Algebra, 52, No. 2, 354–363 (1978).MathSciNetCrossRefMATHGoogle Scholar
  339. 339.
    D. G. James, “Projective geometry over rings with stable range condition,” Linear Multilinear Algebra, 23, No. 4, 299–304 (1988).CrossRefMATHGoogle Scholar
  340. 340.
    D. G. James, W. C. Waterhouse, and B. Weisfeiler, “Abstract homomorphisms of algebraic groups: problems and bibliography,” Commun. Algebra, 9, 95–114 (1981).MathSciNetCrossRefMATHGoogle Scholar
  341. 341.
    W. Jehne, “Die Struktur der symplektischen Gruppen über lolcalen und dedekindsehen Ringen,” Sitzungber. Heidelberg Akad.Wiss., Math. Naturwiss, 3, 189–235 (1962/64).Google Scholar
  342. 342.
    G. A. Jones, “Congruence and noncongruence subgroups of the modular group: a survey,” London Math. Soc. Lect. Notes, 121, 223–234 (1986).Google Scholar
  343. 343.
    S. Jose and R. A. Rao, “A local global principle for the elementary unimodular veetor group,” Contemp. Math., 390, 119–125 (2005).MathSciNetCrossRefGoogle Scholar
  344. 344.
    S. Jose and R. A. Rao. “A structure theorem for the elementary unimodular vector group,” Trans. Amer. Math. Soc., 358, No. 7, 3097–3112 (2005).MathSciNetCrossRefGoogle Scholar
  345. 345.
    B. Kahn, “K2 d’un anneau Euclidien,” J. Pure Appl. Algebra, 34, 255–257 (1984).MathSciNetCrossRefMATHGoogle Scholar
  346. 346.
    W. van der Kallen, “Le K2 des nombres duaux,” C. R. Acad. Sci. Paris, Ser. A–B, 1204–1207 (1971).Google Scholar
  347. 347.
    W. van der Kallen, “The Schur multipliers of SL(3, \( \mathbb{Z} \)) and SL(4, \( \mathbb{Z} \)),” Math. Ann., 212, 47–49 (1974).MathSciNetCrossRefMATHGoogle Scholar
  348. 348.
    W. van der Kallen, “lnjective stability for K2,” Lecture Notes Math., 551, 77–154 (1976).CrossRefGoogle Scholar
  349. 349.
    W. van der Kallen, “Another presentation for Steinberg groups,” Indag. Math., 39, No. 4, 304–312 (1977).MathSciNetGoogle Scholar
  350. 350.
    W. van der Kallen, “The K2 of rings with many units,” Ann. Sci. École Norm. Sup., 4éme Sér., 10, 473–515 (1977).Google Scholar
  351. 351.
    W. van der Kallen, “Homology stability for linear groups,” Invent. Math., 60, 269–295 (1980).MathSciNetCrossRefMATHGoogle Scholar
  352. 352.
    W. van der Kallen, “Stability for K2 of Dedekind rings of arithmetic type,” Lecture Notes Math., 854, 217–248 (1981).CrossRefGoogle Scholar
  353. 353.
    W. van der Kallen, “SL3 \( \left( {\mathbb{C}\left[ x \right]} \right) \) does not have bounded word length,” Springer Lecture Notes Math., 966, 357–361 (1982).CrossRefGoogle Scholar
  354. 354.
    W. van der Kallen, “A group structure on certain orbit sets of unimodular rows,” J. Algebra, 82, 363–397 (1983).MathSciNetCrossRefMATHGoogle Scholar
  355. 355.
    W. van der Kallen, “Vaserstein’s prestabilization theorem over commutative rings,” Comm. Algebra. 15, No. 3, 657–663 (1987).MathSciNetCrossRefMATHGoogle Scholar
  356. 356.
    W. van der Kallen, “A module structure on certain orbit sets of unimodular rows,” J. Pure Appl. Algebra, 57, No. 3, 281–316 (1989).MathSciNetCrossRefMATHGoogle Scholar
  357. 357.
    W. van der Kallen, “Presenting K2 with generic symb0ls,” in: Algebraic K-theory: Connections with Geometry and Topology (1989), pp. 509–516.Google Scholar
  358. 358.
    W. van der Kallen, “From Mennicke symbol to Euler class groups,” in: Algebra, Arithmetic, and Geometry (Mumbai, 2000), Mumbai (2002), pp. 341–354.Google Scholar
  359. 359.
    W. van der Kallen, H. Maazen, and J. Stienstra, “A presentation of some K2(n, R),” Bull. Amer. Math. Soc., 81, 934–936 (1975).MathSciNetCrossRefMATHGoogle Scholar
  360. 360.
    W. van der Kallen, B. Maagurn, and L. N. Vaserstein, “Absolute stable rank and Witt cancellation for noncommutative rings,” Invent. Math., 91, 543–557 (1988).MathSciNetCrossRefGoogle Scholar
  361. 361.
    W. van der Kallen and M. R. Stein, “On the Schur multiplier of Steinberg and Chevalley groups over commutative rings,” Math. Z., 155, 83–94 (1977).MathSciNetCrossRefMATHGoogle Scholar
  362. 362.
    W. van der Kallen and J. Stienstra, “The relative K2 of truncated polynomial rings,” J. Pure Appl. Algebra, 34, 277–289 (1984).MathSciNetCrossRefMATHGoogle Scholar
  363. 363.
    I. Kaplansky, “Elementary divisors and modules,” Trans. Amer. Math. Soc., 66, 464–491 (1949).MathSciNetCrossRefMATHGoogle Scholar
  364. 364.
    M. Kassabov, “Kazhdan constants for SLn \( \left( \mathbb{Z} \right) \),” Int. J. Alg. Comput., 15, No. 5–6, 971–995 (2005).MathSciNetCrossRefMATHGoogle Scholar
  365. 365.
    M. Kassabov and N. Nikolov, “Universal lattices and property tau,” Invent. Math., 165, 209–224 (2006).MathSciNetCrossRefMATHGoogle Scholar
  366. 366.
    M. Kassabov and M. Sapir, “Nonlinearity of matrix groups,” J. Topol. Anal., 1, No. 3, 251–260 (2009).MathSciNetCrossRefMATHGoogle Scholar
  367. 367.
    S. A. Katre, R. A. Rao, and D. N. Sheth, “Solving linear systems via Pfaffians,” Linear Algebra Applic., 430, 968–975 (2009).MathSciNetCrossRefMATHGoogle Scholar
  368. 368.
    K. Keller, “Nieht endlich erzeugbare arithmetische Gruppen über Funktioncnkorper,” Thesis Univ. Frankfurt (1980).Google Scholar
  369. 369.
    M. Kervaire, “Multiplicateurs de Schur et K-theory,” in: Essays on Topology and Related Topics, Mém. dérliés à G. de Rham, Springer-Verlag, Berlin et al. (1970). pp. 212–225.Google Scholar
  370. 370.
    F. Keune, “(t2 - t)-reciprocities of the affine line and Matsumoto’s theorem,” Invent. Math., 28, 185–192 (1975).MathSciNetCrossRefMATHGoogle Scholar
  371. 371.
    F. Keune, “The relativisation of K2,” J. Algebra, 54, No. 1, 159–177 (1978).MathSciNetCrossRefMATHGoogle Scholar
  372. 372.
    F. Keune. “Another presentation for the K2 of a local domain,” J. Pure Appl. Algebra, 22, 131–141 (1981).MathSciNetCrossRefMATHGoogle Scholar
  373. 373.
    F. Keune, “The K2 of a. 1-fold stable ring,” Lecture Notes Math., 1046, 193–228 (1984).MathSciNetCrossRefGoogle Scholar
  374. 374.
    G. Kiralis, S. Krstić, and J. McCool, “Finite presentability of Φn(G), GLn(\( \mathbb{Z} \) G) and their elementary subgroups and Steinberg groups,” Proc. London Math. Soc., 73, No. 3, 575–622 (1996).MathSciNetCrossRefMATHGoogle Scholar
  375. 375.
    F. Kirchheimer, “Die Normalteiler der symplektisehen Gruppen über beliebigen lokalen Ringen,” J. Algebra, 50, 228–241 (1978).MathSciNetCrossRefMATHGoogle Scholar
  376. 376.
    F. Kirchheimer, “Über explizite Präsentation Hilbertscher Modulgruppen zu totalreellen Körpern der Klassenzahl eins,” J. reine angew. Math., 321, 120–137 (1981).MathSciNetMATHGoogle Scholar
  377. 377.
    F. Kirchheimer and J. Wolfart, “Explizite Präsentation gewisser Hilbertscher Modulgruppen durch Ermagende und Relationen,” J. reine angew. Math., 315, 139–173 (1980).MathSciNetMATHGoogle Scholar
  378. 378.
    B. Kirkwood and B. McDonald, “The Witt ring of a. full ring,” J. Algebra, 64, No. 1, 148–166 (1980).MathSciNetCrossRefMATHGoogle Scholar
  379. 379.
    B. Kirkwood and B. McDonald, “The orthogonal and the special orthogonal groups over a full ring,” J. Algebra, 68, No. 1, 121–143 (1981).MathSciNetCrossRefMATHGoogle Scholar
  380. 380.
    B. Kirkwood and B. McDonald, “The symlectic group over a ring with one in its stable range,” Pacific J. Math., 92, No. 1, 111–125 (1981).MathSciNetCrossRefMATHGoogle Scholar
  381. 381.
    S. Klasa, “On Steinberg groups,” Lecture Notes Math., 353, No. 1, 131–138 (1973).MathSciNetCrossRefGoogle Scholar
  382. 382.
    W. Klingenberg, “Linear groups over local rings,” Bull. Amer. Math. Soc., 66, 294–296 (1960).MathSciNetCrossRefMATHGoogle Scholar
  383. 383.
    W. Klingenberg, “Lineare Gruppen über lokalen Ringen,” Amer. J. Math., 83, No. 1, 137–153 (1961).MathSciNetCrossRefGoogle Scholar
  384. 384.
    W. Klingenberg, “Lineare Gruppen über verallgemeinernen Bewertungsringen,” Abh. Math. Semin. Univ. Hamburg., 25, No. 1–2, 23–35 (1961).MathSciNetCrossRefMATHGoogle Scholar
  385. 385.
    W. Klingenberg, “Projektive Geometrie und lineare Algebra über verallgemeinernen Bewertungsringen,” in: Proceedings of the Colloquim on Algebra, Topology, Foundations of Geometry, London, (1962), pp. 99–107.Google Scholar
  386. 386.
    W. Klingenberg, “Die Struktur der linearen Gruppen über einem niehtkommutativen lokalen Ring,” Arch. Math., 13, 73–81 (1962).MathSciNetCrossRefMATHGoogle Scholar
  387. 387.
    W. Klingenberg, “Symplectic groups over local rings,” Amer. J. Math., 85, No. 2, 232–240 (1963).MathSciNetCrossRefMATHGoogle Scholar
  388. 388.
    A. Klyachko, “Automorphisms and isomorphisms of Chevalley groups and algebras,” J. Algebra, 322, 2608–2619 (2010).MathSciNetCrossRefGoogle Scholar
  389. 389.
    M. Kneser, “Normal subgroups of integral orthogonal groups,” Lecture Notes Math., 108, 67–71 (1969).MathSciNetCrossRefGoogle Scholar
  390. 390.
    M. Kneser, “Normalteiler ganzzahliger Spingruppen,” J. reine angew. Math., 311/312, 191–214 (1979).MathSciNetGoogle Scholar
  391. 391.
    M. Kneser, “Erzeugung ganzzahliger orthogonaler Gruppen dureh Spiegelungen,” Math. Ann., 255, No. 4, 453–462 (1981).MathSciNetCrossRefMATHGoogle Scholar
  392. 392.
    K. P. Knudson, “The homology of SL2(F[t, t -1]),” J. Algebra, 180, 87–101 (1996).MathSciNetCrossRefMATHGoogle Scholar
  393. 393.
    K. P. Knudson, “The homology of special linear groups over polynomial rings,” Ann. Sci. École Norm. Sup. 4-eme Ser., 30, No, 3, 385–415 (1997).MathSciNetMATHGoogle Scholar
  394. 394.
    K. P. Knudson, “Unstable homotopy invariance and the homology of SL2(\( \mathbb{Z} \)[t]),” J. Pure Appl. Algebra, 148, 255–266 (2000).MathSciNetCrossRefMATHGoogle Scholar
  395. 395.
    K. P. Knudson, “Homology and finiteness properties of SL2 (\( \mathbb{Z} \)[t, t -1]),” Algebr. Geom. Topol., 8, 2253–2261 (2008).MathSciNetCrossRefMATHGoogle Scholar
  396. 396.
    K, P. Knudson, “Congruenee subgroups and twisted eohomology of SLn(F[t]). I, II,” J. Algebra 207, No, 2, 695–721 (1998); Comm. Algebra 29, No. 12, 5465–5475 (2001).Google Scholar
  397. 397.
    M.-A. Knus, Quadratic and Hermitian Forms Ouer Rings, Springer Verlag, Berlin et al. (1991).Google Scholar
  398. 398.
    M. Kolster, “On injective stability for K2,” Lecture Notes Math., 966, 128–168 (1982).MathSciNetCrossRefGoogle Scholar
  399. 399.
    M. Kolster, “Improvement of K2-stability under transitive actions of elementary groups,” J. Pure Appl. Algebra, 24, 277–282 (1982).MathSciNetCrossRefMATHGoogle Scholar
  400. 400.
    M. Kolster, “General symbols and presentations of elementary linear groups,” J. reine angew. Math., 353, 132–164 (1984).MathSciNetMATHGoogle Scholar
  401. 401.
    M. Kolster, “K2 of noncommutative local rings,” J. Algebra, 95, No. 1, 173–200 (1985).MathSciNetCrossRefMATHGoogle Scholar
  402. 402.
    S. Krstić and J. McCool, “The nonfinite presentability of IA(F 3) and GLn(Int[t, t -1],” Invent. Math., 129, 595–606 (1997).MathSciNetCrossRefMATHGoogle Scholar
  403. 403.
    S. Krstić and J. McCool, “Presenting GLn(kT〉),” J. Pure Appl. Algebra, 141, 175–183 (1999).MathSciNetCrossRefMATHGoogle Scholar
  404. 404.
    M. Kruserneyer, “Fundamental groups, algebraic K-theory, and a problem of Abjyankar,” Invent. Math., 19, 15–47 (1973).MathSciNetCrossRefGoogle Scholar
  405. 405.
    M. Krusemeyer, “Skewly completable rows and a theorem of Swan and Towber,” Comm. Algebra, 4, No, 4, 657–663 (1975).MathSciNetGoogle Scholar
  406. 406.
    S. Krutelevich, “Jordan algebras, exceptional groups and quadratic composition,” J. Algebra, 314, 924–977 (2007).MathSciNetCrossRefMATHGoogle Scholar
  407. 407.
    N. H. J. Lacroix, “Two-dimensional linear groups over local rings,” Canad. J. Math., 21, 106–135 (1969).MathSciNetCrossRefMATHGoogle Scholar
  408. 408.
    N. H. J. Lacroix and C. Levesque, “Sur les sous-groupes normaux de SL2 sur un anneau local,” Canad. Math. Bull., 26, 209–219 (1983).MathSciNetCrossRefMATHGoogle Scholar
  409. 409.
    T. J. Laffey, “Expressing unipotent matrices over rings as products of involutions,” Irish Math. Soc. Bull., No. 40, 24–30 (1998).MathSciNetMATHGoogle Scholar
  410. 410.
    J. Landin and I. Reiner, “Automorphisms of the general linear group over a principal ideal domain,” Ann. Math., 65, 519–526 (1957).MathSciNetCrossRefMATHGoogle Scholar
  411. 411.
    J. Landin and l. Reiner, “Automorphisms of the two-dimensional general linear group over a Euclidean ring,” Proc. Amer. Math. Soc., 9, 209–216 (1958).MathSciNetMATHGoogle Scholar
  412. 412.
    W. G. Leavitt, “Modules without invariant basis number,” Proc. Amer. Math. Soc., 8, 322–328 (1957).MathSciNetCrossRefMATHGoogle Scholar
  413. 413.
    W. G. Leavitt, “The module type of a ring,” Trans. Amer. Math. Soc., 103, 113–130 (1962).MathSciNetCrossRefMATHGoogle Scholar
  414. 414.
    R. Lee and R. Szczarba, “On the homology and cohomology of congruence subgroups,” Invent. Math., 33, 15–53 (1976).MathSciNetCrossRefMATHGoogle Scholar
  415. 415.
    H. W. Lenstra, “K 2 of a global field consists of symbols,” Lecture Notes Math., 551, 69–73 (1976).MathSciNetCrossRefGoogle Scholar
  416. 416.
    H. W. Lenstra, “Grothendieck groups of Abelian group rings,” J. Pure Appl. Algebra, 20, 173–193 (1981).MathSciNetCrossRefMATHGoogle Scholar
  417. 417.
    A. Leutbecher, “Euklidischer Algorithmus und die Gruppe GL2,” Math. Ann., 231, 269–285 (1978).MathSciNetCrossRefMATHGoogle Scholar
  418. 418.
    Fuan Li, “The structure of symplectic group over arbitrary commutative rings,” Acta Math. Sinica (N. S.) 3, No. 3, 247–255 (1987).MathSciNetCrossRefMATHGoogle Scholar
  419. 419.
    Fuan Li, “Local behaviour of systems (ϕ, α, σ),” Kexue Tongbao, 33, 1445–1447 (1988). (in Chinese)Google Scholar
  420. 420.
    Fuan Li, “The structure of orthogonal groups over arbitrary commutative rings,” Chinese Ann. Math., Ser. B, 10, No. 3, 341–350 (1989).MathSciNetMATHGoogle Scholar
  421. 421.
    Fuan Li. “Finite presentability of Steinberg groups over group rings,” Acta Math. Sinica, New Series, 5, No. 4, 297–301 (1989).CrossRefMATHGoogle Scholar
  422. 422.
    Fuan Li, “Homological meaning of systems (ϕ, α, σ),” Acta Math. Sinica, 7, No. 4, 348–353 (1991).MathSciNetCrossRefMATHGoogle Scholar
  423. 423.
    Fuan Li and Zunxian Li, “Automorphisms of SL3 (R), GL3 (R),” Contemp. Math., 82, 47–52 (1984).CrossRefGoogle Scholar
  424. 424.
    Fuan Li and Zunxian Li, “Isomorphisms of GL3 over commutative rings,” Scientia Sinica, Ser. A, 31, 7–14 (1988).MATHGoogle Scholar
  425. 425.
    Fuan Li and Mulan Liu, “Generalized sandwich theorem,” K-Theory, 1, 171–184 (1987).MathSciNetCrossRefGoogle Scholar
  426. 426.
    Fuan Li and Hongshuo Ren, “The automorphisms of two-dimensional linear groups over commutative rings,” Chinese Ann. Math., 10B, No. 1, 50–57 (1989).MathSciNetGoogle Scholar
  427. 427.
    B. Liehl. "On the group SL2 over orders of arithmetic type,” J. reine angew. Math., 323, 153–171 (1981).MathSciNetMATHGoogle Scholar
  428. 428.
    B. Liehl, “Besehränkte Wortlänge in SL2,” Math. Z., 186, 509–524 (1984).MathSciNetCrossRefMATHGoogle Scholar
  429. 429.
    L. Lifschitz and A. Rapinchuk, “On abstract homomorphisms of Chevalley groups with nonreductive image. I,” J. Algebra, 242, No. 1, 374–399 (2001).MathSciNetCrossRefMATHGoogle Scholar
  430. 430.
    Zongzhu Lin, “The isomorphism of linear groups over local rings,” Acta Math. Sinica, New Series, 27, No. 4, 528–531 (1984).MATHGoogle Scholar
  431. 431.
    Shaowu Liu and Luqun Wang, “Homomorphisms between symplectic groups,” Chinese Ann. Math., Ser. B, 14, No. 3, 287–296 (1993).MathSciNetMATHGoogle Scholar
  432. 432.
    J. L. Loday, “Cohomologie et groupe de Steinberg relatifs,” J. Algebra, 54, No. 1, 178–202 (1978).MathSciNetCrossRefMATHGoogle Scholar
  433. 433.
    D. Loukanidis and V. K. Murty, “Bounded generation for SLn (n ≥ 2) and Spn (n ≥ 1),” Preprint (1995).Google Scholar
  434. 434.
    A. W. Lubotzky, “Free quotients and the congruence kernel of SL2,” J. Algebra, 77, 411–418 (1982).MathSciNetCrossRefMATHGoogle Scholar
  435. 435.
    A. Yu. Luzgarev, A. V. Stepanov, and N. A. Vavilov, “Calculations in exceptional groups over rings,” Zap. Nauch. Semin. POMI, 373, 48–72 (2009).Google Scholar
  436. 436.
    H. Maazen, “Homology stability for the general linear group,” Ph. D. Thesis, Utrecht (1979).Google Scholar
  437. 437.
    H. Maazen and J. Stienstra, “A presentation for K 2 of split radical pairs,” J. Pure Appl. Algebra, 10, 271–294 (1977).MathSciNetCrossRefGoogle Scholar
  438. 438.
    B. A. Magurn, “SK1 of dihedral groups,” J. Algebra, 51, No. 2, 399–415 (1978).MathSciNetCrossRefMATHGoogle Scholar
  439. 439.
    B. A. Magurn, “Explicit K 1 of some modular group rings,” J. Pure Appl. Algebra, 206, 3–20 (2006).MathSciNetCrossRefMATHGoogle Scholar
  440. 440.
    B. A. Magurn, van der W. Kallen, and L. N. Vaserstein, “Absolute stable rank and Witt cancellation for noncommutative rings,” Invent. Math., 91, 525–542 (1988).MathSciNetCrossRefMATHGoogle Scholar
  441. 441.
    K. E. Martin, “Orthogonal groups over \( \Re \)((π)),” Amer. J. Math., 95, 59–79 (1973).MathSciNetCrossRefMATHGoogle Scholar
  442. 442.
    A. W. Mason, “A note on subgroups of GL(n, A) which are generated by commutators,” J. London Math. Soc., 11, 509–512 (1974).CrossRefGoogle Scholar
  443. 443.
    A. W. Mason, “On subgroups of GL(n, A) which are generated by commutators. II,” J. reine angew. Math., 322, 118–135 (1981).MathSciNetMATHGoogle Scholar
  444. 444.
    A. W. Mason, “A further note on subgroups of GL(n, A) which are generated by commutators,” Arch. Math., 37, No. 5, 401–405 (1981).MathSciNetCrossRefMATHGoogle Scholar
  445. 445.
    A. W. Mason, “On nonnormal subgroups of GLn(A) which are normalized by elementary matrices,” Ill. J. Math., 28, 125–138 (1984).MATHGoogle Scholar
  446. 446.
    A. W. Mason, “Anomalous normal subgroups of SL2(K[x]),” Quart. J. Math., 36, 345–358 (1985).CrossRefMATHGoogle Scholar
  447. 447.
    A. W. Mason, “Standard subgroups of GL2(A),” Proc. Edin. Math. Soc., 30, 341–349 (1987).CrossRefMATHGoogle Scholar
  448. 448.
    A. W. Mason, “On GL2(A) of a local ring in which 2 is not a unit,” Canad. Math. Bull., 30, 165–176 (1987).MathSciNetCrossRefMATHGoogle Scholar
  449. 449.
    A. W. Mason, “Free quotients of congruence subgroups of SL2 over a Dedekind ring of arithmetic type contained in a function field,” Math. Proc. Cambridge Phil. Soc., 101, 421–429 (1987).CrossRefMATHGoogle Scholar
  450. 450.
    A. W. Mason, “Free quotients of congruence subgroups of SL2 over a coordinate ring,” Math. Z., 198, 39–51 (1988).MathSciNetCrossRefMATHGoogle Scholar
  451. 451.
    A. W. Mason, “On GL2(A) of a local ring in which 2 is not a unit. Il,” Comm. Algebra, 17, 511–551 (1989).MathSciNetCrossRefMATHGoogle Scholar
  452. 452.
    A. W. Mason, “Nonstandard, normal subgroups and nonnormal, standard subgroups of the modular group,” Canad. Math. Bull., 32, No. 1, 109–113 (1989).MathSciNetCrossRefMATHGoogle Scholar
  453. 453.
    A. W. Mason, “Subnormal subgroups of En(R) have no free nonabelian quotients, when n ≥ 3,” Proc. Edinburgh Math. Soc., 119, No. 1, 113–119 (1991).CrossRefGoogle Scholar
  454. 454.
    A. W. Mason, “The order and level of a subgroup of GL2 over a Dedekind ring of arithmetic type,” Proc. Royal Soc. Edinburgh, Sect. A, 119, No. 3–4, 191–212 (1991).CrossRefMATHGoogle Scholar
  455. 455.
    A. W. Mason, “Normal subgroups of SL2(k[t]) with or without free quotients,” J. Algebra, 150, No. 2, 281–295 (1992).MathSciNetCrossRefMATHGoogle Scholar
  456. 456.
    A. W. Mason, “Congruence hulls in SLnJ. Pure Appl. Algebra, 89, No. 3, 255–257 (1993).MathSciNetCrossRefMATHGoogle Scholar
  457. 457.
    A. W. Mason, “Quotients of the congruence kernels of SL2 over arithmetic Dedekind domains,” Israel J. Math., 91, 77–91 (1995).MathSciNetCrossRefMATHGoogle Scholar
  458. 458.
    A. W. Mason, “Unipotent matrices, modulo elementary matrices, in SL2 over a coordinate ring,” J. Algebra, 203, 134–155 (1998).MathSciNetCrossRefMATHGoogle Scholar
  459. 459.
    A. W. Mason, “The generalization of Nagao’s theorem to other subrings of the rational function field,” Comm. Algebra, 31, No. 11, 5199–5242 (2003).MathSciNetCrossRefMATHGoogle Scholar
  460. 460.
    A. W. Mason, “Stabilziers of edges in general linear groups acting on trees,” J. Group Theory, 4, 97–108 (2001).MathSciNetCrossRefMATHGoogle Scholar
  461. 461.
    A. W. Mason and A. Schweizer, “Nonstandard automorphisms and noncongruence subgroups of SL2 over Dedekind domains contained in function fields,” J. Pure Appl. Algebra, 205, 189–209 (2006).MathSciNetCrossRefMATHGoogle Scholar
  462. 462.
    A. W. Mason and W. W. Stothers, “On subgroups of GL(n, A) which are generated by commutators,” Invent. Math., 23, 327–346 (1974).MathSciNetCrossRefMATHGoogle Scholar
  463. 463.
    H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés,” Ann. Sci. École Norm. Sup., 2, No. 4, 1–62 (1969).MATHGoogle Scholar
  464. 464.
    B. R. McDonald, Geometric Algebra Over Local Rings, Marcel Dekker, N.Y. (1976).MATHGoogle Scholar
  465. 465.
    B. R. McDonald, “Automorphisms of GLn(R),” Trans. Amer. Math. Soc., 215, 145–159 (1976).MathSciNetMATHGoogle Scholar
  466. 466.
    B. R. McDonald, “Automorphisms of GLn(R),” Trans. Amer. Math. Soc., 246, 155–171 (1978).MathSciNetMATHGoogle Scholar
  467. 467.
    B. R. McDonald, “GL2 of a ring with many units,” Comm. Algebra, 8, 869–888 (1980).MathSciNetCrossRefMATHGoogle Scholar
  468. 468.
    B. R. McDonald, “Projectivities for rings with many units,” Comm. Algebra, 9, N o. 2, 195–204 (1981).MathSciNetCrossRefMATHGoogle Scholar
  469. 469.
    B. R. McDonald, “Aut(GL2) for rings with many units,” Comm. Algebra, 9, No. 2, 205–220 (1981).MathSciNetCrossRefMATHGoogle Scholar
  470. 470.
    B. R. McDonald, Linear Algebra Over Commutative Rings, Marcel Dekker, N.Y. (1984).MATHGoogle Scholar
  471. 471.
    B. R. McDonald, “Metric geometry over local global commutative rings,” in: Rings and Geometry (1985), pp. 391–415.Google Scholar
  472. 472.
    B. R. McDonald and B. Hershberger, “The orthogonal group over a full ring,” J. Algebra, 51, 536–549 (1978).MathSciNetCrossRefMATHGoogle Scholar
  473. 473.
    G. McHardy, “Endliche und fast-endliche Präsentierbarkeit einiger arithmetischer Gruppen,” Thesis Univ. Frankfurt (1982).Google Scholar
  474. 474.
    L. McQueen and D. R. McDonald, “Automorphisms of the symplectic group over a local ring,” J. Algebra, 30, 485–495 (1974).MathSciNetCrossRefMATHGoogle Scholar
  475. 475.
    P. Menal and J. Moncasi, “On regular rings with stable range 2,” J. Pure Appl. Algebra, 24, 25–40 (1982).MathSciNetCrossRefMATHGoogle Scholar
  476. 476.
    P. Menal and J. Moncasi, “K1 of von Neumann regular rings,” J. Pure Appl. Algebra, 33, No. 3, 295–312 (1984).MathSciNetCrossRefMATHGoogle Scholar
  477. 477.
    P. Menal and L. N. Vaserstein, “On subgroups of GL2 over noncommutative local rings which are normalized by elementary matrices,” Math. Ann., 285, 221–231 (1989).MathSciNetCrossRefMATHGoogle Scholar
  478. 478.
    P. Menal and L. N. Vaserstein, “On subgroups of GL2 over Banach algebras and von Neumann regular rings which are normalized by elementary matrices,” J. Pure Appl. Algebra, 64, No. 2, 149–162 (1990).MathSciNetCrossRefMATHGoogle Scholar
  479. 479.
    P. Menal and L. N. Vaserstein, “On the structure of GL2 over stable range one rings,” J. Algebra, 136, No. 1, 99–120 (1991).MathSciNetCrossRefGoogle Scholar
  480. 480.
    J. Mennicke, “A remark on the congruence subgroup problem,” Math. Scand., 86, 206–222 (2000).MathSciNetMATHGoogle Scholar
  481. 481.
    J. S. Milne, Algebraic Granps and Arithmetic Groups, http://www.jmi1ne.org/math/ (2006).
  482. 482.
    B. Mirzaii, “Homology of classical groups and K-theory,” Ph. D. Thesis, Utrecht Univ., (2005).Google Scholar
  483. 483.
    B. Mirzaii, “Homology stability for unitary groups. II,” K-Theory, 36, No. 3–4, 305–326 (2005).MathSciNetCrossRefMATHGoogle Scholar
  484. 484.
    B. Mirzaii, “Homology of GLn over algebraically closed fields,” J. Landon Math. Soc., 76, 605–621 (2007).MathSciNetCrossRefMATHGoogle Scholar
  485. 485.
    B. Mirzaii, “Homology of GLn: injectivity conjecture for GL4,” Math. Ann., 304, No. 1, 159–184 (2008).MathSciNetGoogle Scholar
  486. 486.
    B. Mirzaii, “Third homology of general linear groups,” J. Algebra, 320, No. 5, 1851–1877 (2008).MathSciNetCrossRefMATHGoogle Scholar
  487. 487.
    B. Mirzaii, “Bloch–Wigner theorem over rings with many units,” arXiv:0807.2039v2 [matl1.KT] (2009).Google Scholar
  488. 488.
    B. Mirzaii, “A note on the third cohomology of GL2,” arXiv:0907.0876v1 [rnath.KT] (2009).Google Scholar
  489. 489.
    B. Mirzaii and W. van der Kallen, “Homology stability for symplectic groups,” arXiv:math/0110163v1 [math.KT] (2001).Google Scholar
  490. 490.
    B. Mirzaii and W. van der Kallen. “Homology stability for unitary groups,” Documenta Math., 7, 143–166 (2002).MATHGoogle Scholar
  491. 491.
    J. Morita, “On the group structure of rank one K2 of some \( {{\mathbb{Z}}_S} \),” Bull. Soc. Math. Belg., 42, 561–575 (1990).MATHGoogle Scholar
  492. 492.
    D. W. Morris, “Bounded generation of SL(n, A),” New York J. Math., 13, 383–421 (2007).MathSciNetMATHGoogle Scholar
  493. 493.
    K. N. Moss, “Homology of SL (n, \( \mathbb{Z}\left[ {\frac{1}{p}} \right] \)),” Duke Math. J., 47, No. 4, 803–818 (1980).MathSciNetCrossRefMATHGoogle Scholar
  494. 494.
    T. Mulders, “Generating the tame and wild kernels by Dennis Stein symbols,” K-Theory, 5, 449–470 (1992).MathSciNetCrossRefMATHGoogle Scholar
  495. 495.
    V. K. Murty, “Bounded and finite generation of arithmetic groups,” in: Number Theory (Halifax. 1994), Providence, RI, (1995), pp. 249–261.Google Scholar
  496. 496.
    H. Nagao, “On GL2(R[x]),” J. Inst. Polytechn. Osaka City Univ., Ser. A, 10, 117–121 (1959).MathSciNetGoogle Scholar
  497. 497.
    K. R. Nagarajan, M. P. Devaasahayam, and T. Soundararajan, “Products of three triangular matrices over commutative rings,” Linear Algebra Applic., 348, 1–6 (2002).CrossRefMATHGoogle Scholar
  498. 498.
    M. Newman, Integral Matrices, Academic Press, N. Y. (1972).MATHGoogle Scholar
  499. 499.
    M. Newman, “Matrix completion theorems,” Proc. Amer. Math. Soc., 94, 39–45 (1985).MathSciNetCrossRefMATHGoogle Scholar
  500. 500.
    M. Newman, “Unimodular commutators,” Proc. Amer. Math. Soc., 101, 605–609 (1987).MathSciNetCrossRefMATHGoogle Scholar
  501. 501.
    O. T. O’Meara, “Finiteness on SLn/TLn over Hasse domains for n ≥ 4,” Math. Z., 86, No. 4, 273–284 (1964).MathSciNetCrossRefMATHGoogle Scholar
  502. 502.
    O. T. O’Meara, “On the finite generation of linear groups over Hasse domains,” J. reine angew. Math., 217, 79–108 (1965).MathSciNetMATHGoogle Scholar
  503. 503.
    O. T. O’Meara, “The automorphisms of the linear groups over any integral domain,” J. reine angew. Math., 223, 56–100 (1966).MathSciNetMATHGoogle Scholar
  504. 504.
    O. T. O’Meara, “The automorphisms of the standard symplectic group over any integral domain,” J. reine angew. Math., 230, 104–138 (1968).MathSciNetMATHGoogle Scholar
  505. 505.
    O. T. O’Meara, “The automorphisms of the orthogonal groups and their congruence subgroups over arithmetic domains,” J. reine angew. Math., 238, 169–206 (1969).MathSciNetMATHGoogle Scholar
  506. 506.
    O. T. O’Meara, “Group-theoretic characterization of transvections using CDC,” Math. Z., 110, 385–394 (1969).MathSciNetCrossRefMATHGoogle Scholar
  507. 507.
    O. T. O’Meara, “The integral classical groups and their automorphisms,” Proc. Symp. Pure Math., 20, 76–85 (1971).MathSciNetGoogle Scholar
  508. 508.
    O. T. O’Meara, “A general isomorphism theory for linear groups,” J. Algebra, 44, 93–142 (1977).MathSciNetCrossRefMATHGoogle Scholar
  509. 509.
    O. T. O’Meara, “A survey of the isomorphism theory of the classical groups,” in: Ring Theory and Algebra. III, Dekker, N. Y. (1980), pp. 225–242.Google Scholar
  510. 510.
    O. T. O’Meara and H. Zassenhaus, “The automorphisms of the linear congruence groups over Dedekind domains,” J. Number. Theory, 1, 211–221 (1969).MathSciNetCrossRefMATHGoogle Scholar
  511. 511.
    A. A. Panin, “Intermediate semigroups are groups,” Semigroup Forum (2011).Google Scholar
  512. 512.
    H. Park, “A realization algorithm for SL2(R[x 1,…x m]) over the Euclidean domain,” SIAM J. Matrix Anal. Appl., 21, No. 1, 178–184 (1999).MathSciNetCrossRefMATHGoogle Scholar
  513. 513.
    H. Park and C. Woodburn, “An algorithmic proof of Suslin’s stability theorem for polynomial rings,” J. Algebra, 178, No. 1, 277–298 (1995).MathSciNetCrossRefMATHGoogle Scholar
  514. 514.
    V. M. Petechuk, “Isomorphisms between linear groups over division rings,” Canad. J. Math., 45, No. 5, 997–1008 (1993).MathSciNetCrossRefMATHGoogle Scholar
  515. 515.
    V. M. Petechuk, “Stability structure of linear group over rings,” Mat. Studii, 16, No. 1, 13–24 (2001).MathSciNetMATHGoogle Scholar
  516. 516.
    A. Pilkington, “The E 2(R)-normalized subgroups of GL2(R). I, II,” J. Algebra, 172, No. 2, 584–611 (1995); 177, No. 3, 619–626.Google Scholar
  517. 517.
    E. Plotkin, “Stability theorems for K-functors for Chevalley groups,” in: Proceeding of the Conference on Non-Assoeiatiue Algebras and Related Topics (Hiroshima 1990), World Sci., London et al. (1991), pp. 203–217.Google Scholar
  518. 518.
    E. Plotkin, “On the stability of K1-functor for Chevalley groups of type E7,” J. Algebra, 210, 67–85 (1998).MathSciNetCrossRefMATHGoogle Scholar
  519. 519.
    E. Plotkin, M. R. Stein, and N. Vavilov, “Stability of K-functors modeled on Chevalley groups, revisited,” (2011) to appear.Google Scholar
  520. 520.
    B. Pollak, “On the structure of local orthogonal groups,” Amer. J. Math., 88, 763–780 (1966).MathSciNetCrossRefMATHGoogle Scholar
  521. 521.
    B. Pollak, “Orthogonal groups over \( \mathbb{R} \)((π)),” Amer. J. Math., 89, 214–230 (1968).MathSciNetCrossRefGoogle Scholar
  522. 522.
    J. Pomfret and B. R. McDonald, “Automorphisms of GLn(R), R a local ring,” Trans. Amer. Math. Soc., 173, 379–388 (1972).MathSciNetMATHGoogle Scholar
  523. 523.
    R. A. Rankin, The Modular Group and Its Subgroups, Lectures at Ramanujan Institute, Madras (1968).Google Scholar
  524. 524.
    R. A. Rao, “An elementary transformation of a special unimodular vector to its top coefficient vector,” Proc. Amer. Math. Soc., 93, No. 1, 21–24 (1985).MathSciNetCrossRefMATHGoogle Scholar
  525. 525.
    R. A. Rao, “The Bass–Quillen conjecture in dimension three but characteristic ≠ 2, 3 via a question of A. Suslin,” Invent. Math., 93, 609–618 (1988).MathSciNetCrossRefMATHGoogle Scholar
  526. 526.
    R. A. Rao, “On some actions of stably elementary matrices on alternating matrices,” Preprint TIFR. (1989).Google Scholar
  527. 527.
    R. A. Rao, “On completing unimodular polynomial vectors of length three,” Trans. Amer. Math. Soc., 325, No. 1, 231–239 (1991).MathSciNetCrossRefMATHGoogle Scholar
  528. 528.
    R. A. Rao, “An abelian group structure on orbits of ‘unimodular squares’ in dimension 3,” J. Algebra, 210, 216–224 (1998).MathSciNetCrossRefMATHGoogle Scholar
  529. 529.
    R. A. Rao and W. der Kallen, “Improved stability for SK1 and WNSd of nonsingular affine·algebra,” Astérisque, 85, 411–420 (1994).Google Scholar
  530. 530.
    A. Rapinchuk, “Congruence subgroup problem for algebraic groups: old and new,” Journées Arithmétiques, 1991 Astérisque, No. 209, 73–84 (1992).Google Scholar
  531. 531.
    I. A. Rapinchuk, “On linear representations of Chevalley groups over commutative rings,” arXiv:1005.0422v1 [math.GR] (2010).Google Scholar
  532. 532.
    N. S. Rege, “On certain classical groups over Hasse domains,” Math. Z., 102, 120–157 (1967).MathSciNetCrossRefMATHGoogle Scholar
  533. 533.
    U. Rehmann, “Präsentationen von Chevalleygruppen über k[t],”’ Preprint Univ. Bielefeld (1975).Google Scholar
  534. 534.
    U. Rehmann, “Zentrale Erweiterungen der speziellen linearen Gruppe eines Sehiefkörpers,” J. reine angew. Math., 301, 77–104 (1978).MathSciNetMATHGoogle Scholar
  535. 535.
    U. Rehmann, “Kommutatoren in GLn(D),” Lecture Notes Math., 778, 117–123 (1980).CrossRefGoogle Scholar
  536. 536.
    U. Rehmann, “Central extensions of SL2 over division rings and metaplectic problem,” Contemp. Math., 55, No. 2, 561–607 (1986).MathSciNetCrossRefGoogle Scholar
  537. 537.
    U. Rehmann and C. Soulé, “Finitely presented groups of matriecs,” Lecture Notes Math., 551, 164–169 (1976).CrossRefGoogle Scholar
  538. 538.
    U. Relnnann and U. Stuhler, “On K2 of finite dimensional division algebras over arithmetical fields,” Invent. Math., 50, 75–90 (1975).Google Scholar
  539. 539.
    I. Reiner, “A new type of automorpliism ofthe general linear group over a. ring,” Ann. Math., 66, 461–466 (1957).MathSciNetCrossRefMATHGoogle Scholar
  540. 540.
    C. Riehin, “The structure of symplectic group over a valuation ring,” Amer. J. Math., 88, 106–128 (1966).MathSciNetCrossRefGoogle Scholar
  541. 541.
    C. R. Riehm, “Orthogonal groups over the integers of a local field. I, II,” Amer. J. Math., 88, 763–780 (1966); 89, 549–577 (1967).Google Scholar
  542. 542.
    M. Roitman, “Completing unimodular rows to invertible matrices,” J. Algebra, 49, 206–211 (1977).MathSciNetCrossRefMATHGoogle Scholar
  543. 543.
    M. Roitman, “On uniniodular rows,” Proc. Amer. Math. Soc., 95, 184–188 (1985).MathSciNetCrossRefMATHGoogle Scholar
  544. 544.
    L. Rovven, Ring Theory (2011).Google Scholar
  545. 545.
    A. Sasane, “Stable ranks of Banach algebras of operator-valued analytic functions.” Compl. Anal. Operator Theory, 3, 323–330 (2009).MathSciNetCrossRefMATHGoogle Scholar
  546. 546.
    J.-P. Serre, “Amalgames et points fixes,” Lecture Notes Math., 372, 633–640 (1974).CrossRefGoogle Scholar
  547. 547.
    J. -P. Serre, Trees, Springer-Verlag, Berlin et al. (1980).CrossRefMATHGoogle Scholar
  548. 548.
    Y. Shalom, “Bounded generation and Kazhdan property (T),” Inst. Hdutes Études Sei. Publ. Math., 90, 145–168 (1999).MathSciNetCrossRefMATHGoogle Scholar
  549. 549.
    Y. Shalom, “Explicit Kazhdan constants for representations of seinisirnple and arithrnetic groups,” Ann. Inst. Fourier (Grenoble), 50, No. 3, 833–863 (2000).MathSciNetCrossRefMATHGoogle Scholar
  550. 550.
    Y. Shalom, “The algebraisation of Kazhdan property (T),” in: International Congress of Mathematicians, 11, 1283–1310 (2006).Google Scholar
  551. 551.
    R. W. Sharpe, “On the structure of the unitary Steinberg group,” Ann. Math., 96, No. 3, 444–479 (1972).MathSciNetCrossRefMATHGoogle Scholar
  552. 552.
    R. W. Sharpe, “On the structure of the Steinberg group St(Λ),” J. Algebra, 68, 453–467 (1981).MathSciNetCrossRefMATHGoogle Scholar
  553. 553.
    J. R. Silvester, "On the K2 of the free associative algebra,” J. Algebra, 26, 35–56 (1973).MathSciNetMATHGoogle Scholar
  554. 554.
    J. R. Silvester, “A presentation ofthe GLn of a semi-local ring,” Lecture Notes Math., 966, 244–260 (1982).MathSciNetCrossRefGoogle Scholar
  555. 555.
    A. Sivatsky and A. Stepanov, “On the word length of cornrnutators in GLn(R).” K-theory, 17, 295–302 (1999).MathSciNetCrossRefGoogle Scholar
  556. 556.
    Th. Skolem, Diophantisehe Gleichungen, Springer, Berlin (1938).Google Scholar
  557. 557.
    R. E. Solami, “The automorphisrns of certain subgroups of PGLn(V),” Ill. J. Math., 16, 330–348 (1972).Google Scholar
  558. 558.
    C. Soulé, “The cohomology of SL3 \( \left( \mathbb{Z} \right) \),” Topology, 17, 1–22 (1978).MathSciNetCrossRefMATHGoogle Scholar
  559. 559.
    C. Soulé, “Presentation finie des groupes de Chevalley a coefficients dans un anneau,” Publ. Math. Univ. Paris. VII, 147–155 (1978).Google Scholar
  560. 560.
    C. Soulé, “Chevalley groups over polynomial rings,” London Math. Soc. Lect. Notes, 36, 359–367 (1979).Google Scholar
  561. 561.
    C. Soulé, “An introduction to arithmetic groups,” in: Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin et al. (2007), pp. 247–276.Google Scholar
  562. 562.
    S. Splitthoff, “Finite presentability of Steinberg groups and related Chevalley groups,” Contemp. Math., 55, II, 635–687 (1986).Google Scholar
  563. 563.
    J. T. Stafford, “Stable structure of noncommutative Noetherian rings,” J. Algebra, 47, 244–267 (1977).MathSciNetCrossRefMATHGoogle Scholar
  564. 564.
    J. T. Stafford, “On the stable range of right Noetherian rings,” Bull. London Math. Soc., 13, 39–41 (1981).MathSciNetCrossRefMATHGoogle Scholar
  565. 565.
    J. T. Stafford, “Absolute stable rank and quadratic forms over nonconmiutative rings,” K-Theory, 4, 121–130 (1990).MathSciNetCrossRefMATHGoogle Scholar
  566. 566.
    A. Stavrova, “Normal structure of maximal parabolic subgroups in Chevalley groups over commutative rings,” Algebra Coll., 16, No. 4, 631–648 (2009).MathSciNetMATHGoogle Scholar
  567. 567.
    M. R. Stein, “Relativising functors on rings and algebraic K-theory,” J. Algebra, 19, No. 1, 140–152 (1971).MathSciNetCrossRefMATHGoogle Scholar
  568. 568.
    M. R. Stein, “Generators relations and coverings of Chevalley groups over comrnutative rings,” Amer. J. Math., 93, No. 4, 965–1004 (1971).MathSciNetCrossRefMATHGoogle Scholar
  569. 569.
    M. R. Stein, “Stability theorems for K1, K2 and related functors modeled on Chevalley groups,” Japan J. Math., 4, No. 1, 77–108 (1978).MathSciNetMATHGoogle Scholar
  570. 570.
    M. R. Stein and R. K. Dennis, “K2 of radical ideals and serni-local rings revisited,” Lecture Notes Math., 342, 281–303 (1972).MathSciNetGoogle Scholar
  571. 571.
    R. Steinberg, “Générateurs, relations et revêtements des groupes algébriques,” in: Colloque sur la Théorie des Groupes Algébriques (Bruxelles, 1962), Guthier-Villar, Paris (1962), pp. 113–127.Google Scholar
  572. 572.
    R. Steinberg, “Some consequences of elementary relations of SLn,” Contemp. Math., 45, 335–350 (1985).CrossRefGoogle Scholar
  573. 573.
    A. Stepanov, “Universal localization in algebraic groups,” http://alexe:i.stepanov.spb.ru/~publicat.html (2010) to appear.Google Scholar
  574. 574.
    A. Stepanov and N. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory, 19, 109–153 (2000).MathSciNetCrossRefMATHGoogle Scholar
  575. 575.
    A. Stepanov and N. Yavilov, “On the length of commutators in Chevalley groups,” Israel Math. J., 1–20 (2011).Google Scholar
  576. 576.
    U. Stuliler, “Zur Frage der endlichen Präsentierbarkeit gewisser aritlimetiseher Gruppen im Funktionenkörperfall,” Math. Ann., 224, 217–232 (1976).MathSciNetCrossRefGoogle Scholar
  577. 577.
    U. Stuhler, “Homological properties of certain arithmetic groups in the function Held case,” Invent. Math., 57, 263–281 (1980).MathSciNetCrossRefMATHGoogle Scholar
  578. 578.
    A. A. Suslin, “Stability in algebraic K-theory,” Lecture Notes Math., 966, 304–333 (1982).MathSciNetCrossRefGoogle Scholar
  579. 579.
    A. A. Suslin, “Mennicke symbols and their applications in the K-theory of fields,” Lecture Notes Math., 966, 334–356 (1982).MathSciNetCrossRefGoogle Scholar
  580. 580.
    A. A. Suslin, “Homology of GLn, characteristic classes and Milnor’s K-theory,” Lecture Notes Math., 1046, 357–384 (1984).MathSciNetCrossRefGoogle Scholar
  581. 581.
    K. Suzuki, “On the autornorphisms of Chevalley groups over p-adic integer rings,” Kumamato J. Sci., Math., 16, No. 1, 39–47 (1984).Google Scholar
  582. 582.
    R. G. Swan, “Generators and relations for certain special linear groups,” Bull. Amer. Math. Soc., 74, 576–581 (1968).MathSciNetCrossRefMATHGoogle Scholar
  583. 583.
    R. G. Swan, “Generators and relations for certain special linear groups,” Adv. Math., 6, 1–77 (1971).MathSciNetCrossRefMATHGoogle Scholar
  584. 584.
    R. G. Swan and L. N. Vaserstein, “On the absolute stable range of rings of continuous functions,” Contemp. Math., 55, No. 11, 689–692 (1986).MathSciNetCrossRefGoogle Scholar
  585. 585.
    G. Taddei, “Invariance du sous-groupe symplectique élémentaire dans le groupe symplectique sur un anneau,” C. R. Acad. Sci Paris, Sér I, 295, No. 2, 47–50 (1982).Google Scholar
  586. 586.
    G. Taddei, “Norrnalité des groupes élémentaire dans les groupes de Chevalley sur un anneau,” Contemp. Math., 55 Part II, 693–710 (1986).Google Scholar
  587. 587.
    Tang Guoping, “Hermitian groups and K-theory,” K-Theory, 13, No. 3, 209–267 (1998).MathSciNetCrossRefMATHGoogle Scholar
  588. 588.
    Tang Xiangpu, “An Jianbei. The structure of symplectic groups over semi-local rings,” Acta Math. Sinica, New Series, 1, 1–15 (1985).Google Scholar
  589. 589.
    O. l. Tavgen’, “Bounded generation of normal and twisted Chevalley groups over the rings of S-integers,” Contemp. Math., 131, No. 1, 409–421 (1992).Google Scholar
  590. 590.
    J. Tits, "Homomorphismes et automorphismes “abstraits” de groupes algebriques et arithmetiques,” in: International Congress of Mathematics (Nice, 1970), Gauthier-Villars, Paris (1971), pp. 349–355.Google Scholar
  591. 591.
    J. Tits, “Homomorphisms “abstraits” de groupes de Lie,” in: Convegno di Gruppi e Loro Rappresentazioni, INDAM (Roma, 1972). Academic Press, London (1974), pp. 479–499.Google Scholar
  592. 592.
    J. Tits, “Systemes generateurs de groupes de eongruenees,” C. R. Acad. Sci. Paris, Sér. A, 283, 693–695 (1976).Google Scholar
  593. 593.
    M. F. Trittler, “Die Normalteiler symplektischer Gruppen iiber Bewertungsringen mit einer Restklassenkörper-Charakteristik ≠ 2,” Manuscripta Math., 103, 117–134 (2000).MathSciNetCrossRefMATHGoogle Scholar
  594. 594.
    R. Tuler, “Subgroups of SL2(Int) generated by elementary rnatrices,” Proc. Ray. Soc. Edinburgh, Ser. A, 88, No. 1–2, 43–47 (1981).Google Scholar
  595. 595.
    L. N. Vaserstein, “On the normal subgroups of the GLn of a ring,” Springer Lecture Notes Math., 854, 454–465 (1981).MathSciNetGoogle Scholar
  596. 596.
    L. N. Vaserstein, “Bass’s first stable range condition,” J. Pure Appl. Algebra, 34, No. 2–3, 319–330 (1984).MathSciNetCrossRefMATHGoogle Scholar
  597. 597.
    L. N. Vaserstein, “Classical groups over rings,” Canad. Math. Soc. Conf. Proc., 4, 131–140 (1984).MathSciNetGoogle Scholar
  598. 598.
    L. N. Vaserstein, “Normal subgroups of the general linear groups over von Neumann rings,” Proc. Amer. Math. Soc., 96, No. 2, 209–214 (1986).MathSciNetCrossRefMATHGoogle Scholar
  599. 599.
    L. N. Vaserstein, “Normal subgroups of the general linear groups over Banach algebras,” J. Pure Appl. Algebra, 41, 99–112 (1986).MathSciNetCrossRefMATHGoogle Scholar
  600. 600.
    L. N. Vaserstein, “An answer to the question of M. Newman on rnatrix cornpletion,” Proc. Amer. Math. Soc., 97, No. 2, 189–196 (1986).MathSciNetCrossRefMATHGoogle Scholar
  601. 601.
    L. N. Vaserstein, “The subnormal structure of general linear groups,” Math. Proc. Cambridge Phil. Soc., 99, 425–431 (1986).MathSciNetCrossRefMATHGoogle Scholar
  602. 602.
    L. N. Vaserstein, “Operations on orbits of unirnorlular vectors,” J. Algebra, 100, 456–461 (1986).MathSciNetCrossRefMATHGoogle Scholar
  603. 603.
    L. N. Vaserstein, “On normal subgroups of Chevalley groups over eommutative ririgs,” Tôhoku Math. J., 36, No. 5, 219–230 (1986).MathSciNetCrossRefGoogle Scholar
  604. 604.
    L. N. Vaserstein, “Computation of K1 via Mennicke symbols,” Comm. Algebra, 15, 611–656 (1987).MathSciNetCrossRefMATHGoogle Scholar
  605. 605.
    L. N. Vaserstein, “Subnormal subgroups of the general linear groups over Banach algebras,” J. Pure Appl. Algebra, 52, 187–195 (1988).MathSciNetCrossRefMATHGoogle Scholar
  606. 606.
    L. N. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings,” Amer. J. Math., 110, No. 5, 955–973 (1988).MathSciNetCrossRefMATHGoogle Scholar
  607. 607.
    L. N. Vaserstein, “Reduction of a matrix depending on parameters to a diagonal form by addition operators,” Proc. Amer. Math. Soc., 103, No. 3, 741–746 (1988).MathSciNetCrossRefMATHGoogle Scholar
  608. 608.
    L. N. Vaserstein, “Normal subgroups of classical groups over rings and gauge groups,” Contemp. Math., 83, 451–459 (1989).MathSciNetCrossRefGoogle Scholar
  609. 609.
    L. N. Vaserstein, “Norrnal subgroups of symplectic groups over rings,” K-Theory, 2, No. 5, 647–673 (1989).MathSciNetCrossRefMATHGoogle Scholar
  610. 610.
    L. N. Vaserstein, “Linear algebra and algebraic K-theory,” Contemp. Math., 82, 191–197 (1989).MathSciNetCrossRefGoogle Scholar
  611. 611.
    L. N. Vaserstein, “The subnormal structure of general linear groups over rings,” Math. Proc. Cambridge Phil. Soc., 108, No. 2, 219–229 (1990).MathSciNetCrossRefMATHGoogle Scholar
  612. 612.
    L. N. Vaserstein, “On normal subgroups of GL2 over rings with many units,” Compositio Math., 74, No. 2, 157–164 (1990).MathSciNetMATHGoogle Scholar
  613. 613.
    L. N. Vaserstein, “On the VVhitehead determinant for semi-local rings,” J. Algebra, 283, 690–699 (2005).Google Scholar
  614. 614.
    L. N. Vaserstein, “Polynomial parametrization for the solution of Diophantine equations and arithmetic groups,” Ann. Math., 171, No. 2, 979–1009 (2010).MathSciNetCrossRefMATHGoogle Scholar
  615. 615.
    L. N. Vaserstein and B. A. Magurn, “Prestabilization for K1 of Banach algebras,” Linear Algebra Appl., 95, 69–96 (1987).MathSciNetCrossRefMATHGoogle Scholar
  616. 616.
    L. N. Vaserstein and E. Wheland, “Factorization of invertible matrices over rings of stable rank one,” J. Austral Math. Soc. Ser. A, 48, No. 3, 455–460 (1990).MathSciNetCrossRefMATHGoogle Scholar
  617. 617.
    L. N. Vaserstein and E. Wheland, “Commutators and companion matrices over rings of stable rank 1,” Linear Algebra Appl., 142, 263–277 (1990).MathSciNetCrossRefMATHGoogle Scholar
  618. 618.
    L. N. Vascrstein and You Hong, “Normal subgroups of classical groups over rings,” J. Pure Appl. Algebra, 105, No. 1, 93–106 (1995).MathSciNetCrossRefGoogle Scholar
  619. 619.
    N. Vavilov, “A note on the subnormal structure of general linear groups,” Math. Proc. Cambridge Phil. Soc., 107, No. 2, 193–196 (1990).MathSciNetCrossRefMATHGoogle Scholar
  620. 620.
    N Vavilov, “Structure of Cheyalley groups over commutative rings,” in: Proceedings of the Conference on Non-Associotibe Algebros ond Related Topics (Hiroshima – 1990), World Sci., London et al. (1991), pp. 219–335.Google Scholar
  621. 621.
    N. Vavilov, “Intermediate subgroups in Chevalley groups,” in: Proceedings of the Conference on Groups of Lie Type and Their Geometries (Como – 1993), Cambridge Univ. Press (1995), pp. 233–280.Google Scholar
  622. 622.
    N. Vayilov, “A third look at weight diagrams,” Rendiconti del Sem. Mat. Univ. Padova, 204, No. 1, 201–250 (2000).Google Scholar
  623. 623.
    N. Vavilov, “An A3-proof of structure theorems for Chevalley groups of types E6 and E7,” Intern. J. Algebra Comput., 17, No. 5–6, 1–16 (2007).MathSciNetGoogle Scholar
  624. 624.
    N. Vavilov and E. Plotkin, “Chevalley groups over commutative rings. l. Elementary calculations,” Acta Applicandae Math., 45, No. 1, 73–113 (1996).MathSciNetCrossRefMATHGoogle Scholar
  625. 625.
    F. D. Veldkamp, “Projective planes over rings of stable rank 2,” Geom. Dedic., 11, 285–308 (1981).MathSciNetCrossRefMATHGoogle Scholar
  626. 626.
    F. D. Veldkamp, “Projective geometry over finite rings,” Quaderni del Semin. di Gcorn. Combinat. Univ. Rama I “La Snpienza”, No. 92, 1–39 (1989).Google Scholar
  627. 627.
    K. Vogtmann, “Spherical posets and homology stability for O n,nTopology, 20, No. 2, 119–132 (1981).MathSciNetCrossRefMATHGoogle Scholar
  628. 628.
    T. Vorst, “The general linear group of polynomial rings over regular rings,” Comm. Algebra, 9, 499–509 (1981).MathSciNetCrossRefMATHGoogle Scholar
  629. 629.
    J. B. Wagoner, “On K2 of the Laurent polynomial ring,” Amer. J. Math., 93, 123–138 (1971).MathSciNetCrossRefMATHGoogle Scholar
  630. 630.
    J. B. Wagoner, “Stability for homology of the general linear group of a local ring,” Topology, 15, 417–423 (1976).MathSciNetCrossRefMATHGoogle Scholar
  631. 631.
    Zhexian Wan, “On the automorphisms of linear groups over a noncommutative Euclidean ring of characteristic ≠ 2,” Sci. Record, 1, No. 1, 5–8 (1957).MathSciNetMATHGoogle Scholar
  632. 632.
    Zhexian Wan, “On the automorphisms of linear groups over a noncommutative principal ideal domain of characteristic ≠ 2,” Sci. Sinica, 7, 885–933 (1958).MathSciNetMATHGoogle Scholar
  633. 633.
    Zhexian Wan, “Some recent progress on classical groups in China,” Contemp. Math., 82, 221–230 (1989).CrossRefGoogle Scholar
  634. 634.
    Zhexian Wan and Hongshuo Ren, “Automorphisms of two-dimensional linear groups over local rings of characteristic 2,” Chinese Ann. Math., 4, No. 4, 419–434 (1983).MathSciNetGoogle Scholar
  635. 635.
    Zhexian Wan and Xiaolong Wu, “On the second commutator subgroup of PGL2(Int),” Math. Rep. Acad. Sci. Canada, 11, No. 6, 303–308 (1980).Google Scholar
  636. 636.
    Chunsen Wang, “Automorphisms of linear groups over a class of rings,” Chinese Ann. Math., 4, No. 2, 263–269 (1983).MathSciNetMATHGoogle Scholar
  637. 637.
    Luqun Wang, “On the standard form of normal subgroups of linear groups over rings,” Chinese Ann. Math., 5, No. 2, 229–238 (1984).MathSciNetMATHGoogle Scholar
  638. 638.
    Luqun Wang and Yongzheng Zhang, “GL2 over full rings,” Chinese Ann. Math., 8, No. 4, 434–439 (1987).MathSciNetMATHGoogle Scholar
  639. 639.
    Renfa. Wang and Hong You, “The structure of symplectic groups over semi-local rings,” Chinese Ann. Math. Ser. A, 5, 33–40 (1984) (in Chinese).Google Scholar
  640. 640.
    W. P. Wardlaw, “Defining relations for certain integrally parametrized Chevalley groups,” Pacif. J. Math., 40, 235–250 (1972).MathSciNetCrossRefMATHGoogle Scholar
  641. 641.
    W. C. Waterhouse, Introduction to Affine Group Schemes, Springer-Verlag, N.Y. et al. (1979).CrossRefMATHGoogle Scholar
  642. 642.
    W. C. Waterhouse, “Automorphisms of GLn(R),” Proc. Amer. Math. Soc., 79, 347–351 (1980).MathSciNetMATHGoogle Scholar
  643. 643.
    W. C. Waterhouse, “Automorphisms of quotients of Π GL(n i),” Pacif. J. Math., 102, 221–233 (1982).MathSciNetCrossRefMATHGoogle Scholar
  644. 644.
    W. C. Waterhouse, “Automorphisms of det(X ij): the group scheme approach,” Adv. Math., 65, No. 2, 171–203 (1987).MathSciNetCrossRefMATHGoogle Scholar
  645. 645.
    C. Weibel, “Mennicke-type symbols for relative K2,” Lecture Notes Math., 1046, 451–464 (1984).MathSciNetCrossRefGoogle Scholar
  646. 646.
    B. Weisfeiler, “On abstract hoinorphisms of anisotropic algebraic groups over real closed fields,” J. Algebra, 60, 485–519 (1979).MathSciNetCrossRefMATHGoogle Scholar
  647. 647.
    B. Weisfeiler, “Monomorphisms between subgroups of groups of type G2,” J. Algebra, 68, 306–334 (1981).MathSciNetCrossRefMATHGoogle Scholar
  648. 648.
    B. Weisfeiler, “Abstract isomorphisms of simple algebraic groups split by quadratic; extension,” J. Algebra, 68, 335–368 (1981).MathSciNetCrossRefMATHGoogle Scholar
  649. 649.
    B. Weisfeiler, “Abstract homomorphisms of big subgroups of algebraic groups,” in: Topics in the Theory of Algebraic Groups, Notre Dame Math. Lectures (1982), pp. 135–181.Google Scholar
  650. 650.
    M. Wendt, “On fibre sequence in motivic homotopy theory,” Thesis Univ. Leipzig (2007).Google Scholar
  651. 651.
    M. Wendt, “\( {{\mathbb{A}}^1} \)-homotopy of Chevalley groups,” J. K-Theory, 5, No. 2, 245–287 (2010).MathSciNetCrossRefMATHGoogle Scholar
  652. 652.
    K. Weston, “On nilpotent class 2 groups and the Steinberg groups St(3, R),” Arch. Math., 45, 207–210 (1985).MathSciNetCrossRefMATHGoogle Scholar
  653. 653.
    J. S. Wilson, “The normal and subnormal structure of general linear groups,” Proc. Cambridge Philos. Soc., 71, 163–177 (1972).MathSciNetCrossRefMATHGoogle Scholar
  654. 654.
    D. Witte, “Products of similar matrices,” Proc. Amer. Math. Soc., 126, No. 4, 1005–1015 (1998).MathSciNetCrossRefMATHGoogle Scholar
  655. 655.
    D. Wright, “The amalgamated free product structure of GL2 (k[x 1,…,x n]),” Bull. Amer. Math. Soc., 82, No. 5, 724–726 (1976).MathSciNetCrossRefMATHGoogle Scholar
  656. 656.
    D. Wright, “The amalgamated free product structure of GL2(k[X 1,…,X n]) and the weak Jacobian theorem for two variables,” J. Pure Appl. Algebra, 12, No. 3, 235–251 (1978).MathSciNetCrossRefMATHGoogle Scholar
  657. 657.
    S. Yagunov, “On the homology of GLn and the higher pre-Bloch groups,” Canad. J. Math., 52, No. 6, 1310–1338 (2000).MathSciNetCrossRefMATHGoogle Scholar
  658. 658.
    C. R. Yohe, “Triangular and diagonal forms for rnatrices over coinrnutative noetherian rings,” J. Algebra, 6, 335–368 (1967).MathSciNetCrossRefMATHGoogle Scholar
  659. 659.
    Hong You, “Prestabilization for K1Uϵ of Λ-2-fold rings,” Chinese Sci. Bull., 37, No. 5, 357–361 (1992).MATHGoogle Scholar
  660. 660.
    Hong You, “Stabilization of unitary groups over polynomial rings,” Chinese Ann. Math., Ser. B, 16, No. 2, 177–190 (1995).Google Scholar
  661. 661.
    Hong You, “Subgroups of classical groups normalised by relative elementary groups,” J. Pure Appl. Algebra, 1–16 (2011) (to appear).Google Scholar
  662. 662.
    Hong You and Sheng Chen, “Subrings in quadratic fields which are not universal for GE2,” Quarl. J. Math., 54, 233–241 (2003).Google Scholar
  663. 663.
    Hong You and Shengkui Ye, “Prestability for quadratic K1 of Λ-1-fold stable rings,” J. Algebra, 319, 2072–2081 (2008).MathSciNetCrossRefMATHGoogle Scholar
  664. 664.
    D. C. Youla and P. F. Pickel, “The Quillen–Suslin theorem and the structure of n-dimensional elementary polynomial matrices,” IEEE Trans. Circuits Systems, 31, 513–517 (1984).MathSciNetCrossRefMATHGoogle Scholar
  665. 665.
    Jiangguo Zha., “An embedding theorem between special linear groups over any fields,” Chinese Ann. Math., Ser. B, 16, No. 4, 477–486 (1995).Google Scholar
  666. 666.
    Jiangguo Zha, “Hornornorphisrns between the Chevalley groups over any field of eliaraeeristic zero,” Comm. Algebra, 24, No. 2, 659–703 (1996).MathSciNetCrossRefGoogle Scholar
  667. 667.
    Jiangguo Zha, “Determination of hoinoinorphisins between linear groups of the saine degree over division rings,” J. London Math. Soc., 53, No. 3, 479–488 (1996).MathSciNetCrossRefMATHGoogle Scholar
  668. 668.
    Haiquan Zhang and Luqun Wang, “Normal subgroups of syrnplectic groups over Φ-surjective rings,” Acta Math. Sinica, 25, 270–278 (1985) (in Chinese).Google Scholar
  669. 669.
    Yongzheng Zhang, “The structure of two-dimentional linear groups over semi-local rings,” Kexue Tongbao, 26, No. 23, 1469 (1981) (in Chinese).Google Scholar
  670. 670.
    Zuhong Zhang, “Lower K-theory of unitary groups,” Dolctorarbeit Univ. Belfast (2007).Google Scholar
  671. 671.
    Zuhong Zhang, “Stable sandwich classification theorem for classical-like groups,” Math. Proc. Cambridge Phil. Soc., 143, No. 3, 607–619 (2007).CrossRefMATHGoogle Scholar
  672. 672.
    Zuhong Zhang, “Subnormal structure of nonstable unitary groups over rings,” J. Pure Appl. Algebra, 214, 622–628 (2010).Google Scholar
  673. 673.
    Fang Zhou and Li Li, “A theorern on the generators of the general linear group over a local ring R,” Dongbei Shida Xuebao, No. 2, 123–127 (1983) (in Chinese).Google Scholar
  674. 674.
    R. Zirnniert, “Zur SL2 der ganzen Zahlen eines irnaginarquadratischen Zahlkörpers,” Inv. Math., 19, 73–81 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Abdus Salam School of mathematical SciencesLahorePakistan

Personalised recommendations