Advertisement

Journal of Mathematical Sciences

, Volume 186, Issue 5, pp 781–784 | Cite as

A problem from the kourovka notebook on embeddings of the group \( \mathbb{Q} \)

  • V. H. Mikaelian
Article
  • 30 Downloads

Abstract

Answering the question of de la Harpe and Bridson in the Kourovka Notebook, Problem 14.10(b), we construct explicit embeddings of the additive group of rational numbers \( \mathbb{Q} \) in a finitely generated group G. In fact, the group G is 2-generator, and the constructed embedding can be subnormal and preserve a few properties such as solubility or torsion freeness.

Keywords

Abelian Group Rational Number London Math Wreath Product Countable Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Dark, “On subnormal embedding theorems for groups,” J. London Math. Soc., 43, 387–390 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    P. Hall, “The Frattini subgroups of finitely generated groups,” Proc. London Math. Soc. (3), 11, 327–352 (1961).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    P. Hall, “On the embedding of a group in a join of given groups,” J. Aust. Math. Soc., 17, 434–495 (1974).zbMATHCrossRefGoogle Scholar
  4. 4.
    G. Higman, B. H. Neumann, and H. Neumann, “Embedding theorems for groups,” J. London Math. Soc., 24, 247–254 (1949).MathSciNetCrossRefGoogle Scholar
  5. 5.
    The Kourovka Notebook. Unsolved Problems in Group Theory, 14th edition (V. D. Mazurov and E. I. Khukhro, Eds.), Ross. Akad. Nauk, Sib. Otd. Inst. Mat. Novosibirsk (1999).Google Scholar
  6. 6.
    A. G. Kurosh, The Theory of Groups, Chelsea Publ., New York (1960).Google Scholar
  7. 7.
    R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin–New York (1977).zbMATHGoogle Scholar
  8. 8.
    V. H. Mikaelian, “Subnormal embedding theorems for groups,” J. London Math. Soc. (2), 62, No. 2, 398–406 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    V. H. Mikaelian and H. Heineken, “On normal verbal embeddings of groups,” J. Math. Sci., 100, No. 1, 1915–1924 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    V. H. Mikaelian, “On varieties of groups generated by wreath products of abelian groups,” in: Abelian Groups, Rings, and Modules (Perth, 2000), Contemp. Math., 273, Amer. Math. Soc., Providence, Rhode Island (2001), pp. 223–238.Google Scholar
  11. 11.
    V. H. Mikaelian, “On embeddings of countable generalized soluble groups in two-generated groups,” J. Algebra, 250, 1–17 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    V. H. Mikaelian, “Two problems on varieties of groups generated by wreath products,” Int. J. Math. Math. Sci., 31, No. 2, 65–75 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    V. H. Mikaelian, “An embedding construction for ordered groups,” J. Aust. Math. Soc., 74, No. 3, 379–392 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    V. H. Mikaelian, “On wreath products of finitely generated abelian groups,” in: Advances in Group Theory 2002, Aracne, Rome (2003), pp. 13–24.Google Scholar
  15. 15.
    V. H. Mikaelian, “On normal verbal embeddings of some classes of groups,” Beitrage Algebra Geom., 45, No. 2, 501–516 (2004).MathSciNetzbMATHGoogle Scholar
  16. 16.
    V. H. Mikaelian, “Infinitely many not locally soluble SI*-groups,” Ric. Mat., 52, No. 1, 1–19 (2003).MathSciNetzbMATHGoogle Scholar
  17. 17.
    V. H. Mikaelian, “On embedding properties of SD-groups,” Int. J. Math. Math. Sci., Nos. 1–4, 65–76 (2004).Google Scholar
  18. 18.
    V. H. Mikaelian, “On a problem on explicit embeddings of the group \( \mathbb{Q} \),” Int. J. Math. Math. Sci., No. 13, 2119–2123 (2005).MathSciNetCrossRefGoogle Scholar
  19. 19.
    V. H. Mikaelian, “Metabelian varieties of groups and wreath products of abelian groups,” J. Algebra, 313, No. 2, 455–485 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    V. H. Mikaelian, “On finitely generated soluble non-Hopfian groups, an application to a problem of Neumann,” Int. J. Algebra Comput., 17, Nos. 5-6, 1107–1113 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    V. H. Mikaelian, “SD-groups and embeddings,” Arm. J. Math., 1, No. 3, 23–42 (2008).MathSciNetGoogle Scholar
  22. 22.
    V. H. Mikaelian, “On finitely generated soluble non-Hopfian groups, Fundam. Prikl. Mat., 14, No. 8, 185–202 (2008).Google Scholar
  23. 23.
    V. H. Mikaelian, “Normal embeddings and wreath products of groups,” Fundam. Prikl. Mat. (in preparation).Google Scholar
  24. 24.
    V. H. Mikaelian, “A geometrical interpretation of infinite wreath powers,” (in preparation).Google Scholar
  25. 25.
    B. H. Neumann, “On ordered groups,” Am. J. Math., 71, 1–18 (1949).zbMATHCrossRefGoogle Scholar
  26. 26.
    B. H. Neumann and H. Neumann, “Embedding theorems for groups,” J. London Math. Soc., 34, 465–479 (1959).MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    P. M. Neumann, “On the structure of standard wreath products of groups,” Math. Z., 84, 343–373 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    A. Yu. Ol’shanskiĭ, Geometry of Defining Relations in Groups, Math. Appl., 70, Kluwer Academic Publishers, Dordrecht (1991).CrossRefGoogle Scholar
  29. 29.
    D. J. S. Robinson, A Course in the Theory of Groups, Grad. Texts Math., 80, Springer-Verlag, New York (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Yerevan State UniversityYerevanArmenia

Personalised recommendations