Advertisement

Journal of Mathematical Sciences

, Volume 182, Issue 3, pp 255–440 | Cite as

Elliptic problems with nonlocal boundary conditions and Feller semigroups

  • P. L. GurevichEmail author
Article

Abstract

This monograph is devoted to the following interrelated problems: the solvability and smoothness of elliptic linear equations with nonlocal boundary conditions and the existence of Feller semigroups that appear in the theory of multidimensional diffusion processes.

Keywords

Fredholm Operator Conjugation Point Nonlocal Condition Nonlocal Problem Nonlocal Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Agranovich and M. I. Vishik, “Elliptic problems with parameters and parabolic problems of general type,” Usp. Mat. Nauk, 19, No. 3(117), 53–161 (1964).zbMATHGoogle Scholar
  2. 2.
    N. I. Ahiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces [in Russian], Nauka, Moscow (1966).Google Scholar
  3. 3.
    H. Amann, “Feedback stabilization of linear and semilinear parabolic systems,” Lect. Notes Pure Appl. Math., 116, 21–57 (1989).MathSciNetGoogle Scholar
  4. 4.
    A. Antonevich and A. Lebedev, Functional Differential Equations, I. C*-Theory, Longman Scientific & Technical, Harlow (1994).Google Scholar
  5. 5.
    R. Beals, “Nonlocal elliptic boundary-value problems,” Bull. Am. Math. Soc., 70, No. 5, 693–696 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Bensoussan and J.-L. Lions, Impulse Control and Quasi-Variational Inequalities, Gauthier-Villars, Paris (1984).Google Scholar
  7. 7.
    A. V. Bitsadze, “On the theory of nonlocal boundary-value problems,” Sov. Math. Dokl., 30, 8–10 (1984).zbMATHGoogle Scholar
  8. 8.
    A. V. Bitsadze, “On a class of conditionally solvable nonlocal boundary-value problems for harmonic functions,” Sov. Math. Dokl., 31, 91–94 (1985).zbMATHGoogle Scholar
  9. 9.
    A. V. Bitsadze and A. A. Samarskii, “On some simple generalizations of linear elliptic boundaryvalue problems,” Sov. Math. Dokl., 10, 398–400 (1969).zbMATHGoogle Scholar
  10. 10.
    J. M. Bony, P. Courrege, and P. Priouret, “Semi-groups de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum,” Ann. Inst. Fourier (Grenoble), 18, 369–521 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    F. Browder, “Nonlocal elliptic boundary value problems,” Am. J. Math., 86, 735–750 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    T. Carleman, “Sur la théorie des equations integrales et ses applications,” Verhandlungen des Internat. Math. Kongr. Zürich, 1, 138–151 (1932).Google Scholar
  13. 13.
    P. Colli, M. Grasselli, and J. Sprekels, “Automatic control via thermostats of a hyperbolic Stefan problem with memory,” Appl. Math. Optim., 39, 229–255 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    S. D. Eidelman and N. B. Zhiratau, “On nonlocal boundary-value problems for elliptic equations,” Math. Issled., 6, No. 2 (20), 63–73 (1971).Google Scholar
  15. 15.
    W. Feller, “The parabolic differential equations and the associated semi-groups of transformations,” Ann. Math., 55, 468–519 (1952).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    W. Feller, “Diffusion processes in one dimension,” Trans. Am. Math. Soc., 77, 1–30 (1954).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    E. I. Galakhov, “Sufficient conditions for the existence of Feller semigroups,” Math. Notes, 60, No. 3, 328–330 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    E. I. Galakhov, “Multidimensional diffusion processes with nonlocal conditions,” Funct. Differ. Equ., 8, Nos. 1–2, 225–238 (2001).MathSciNetzbMATHGoogle Scholar
  19. 19.
    E. I. Galakhov and A. L. Skubachevskii, “On contracting nonnegative semigroups with nonlocal conditions,” Mat. Sb., 189, 45–78 (1998).MathSciNetzbMATHGoogle Scholar
  20. 20.
    E. I. Galakhov and A. L. Skubachevskii, “On Feller semigroups generated by elliptic operators with integro-differential boundary conditions,” J. Differ. Equ., 176, 315–355 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M. G. Garroni and J. L. Menaldi, Second-Order Elliptic Integro-Differential Problems, Chapman & Hall/CRC, London–New York–Washington (2002).CrossRefzbMATHGoogle Scholar
  22. 22.
    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin (2001).zbMATHGoogle Scholar
  23. 23.
    I. Ts. Gohberg and E. I. Sigal, “An operator generalization of the logarithmic residue theorem and the theorem of Rouche,” Math. USSR, Sb., 13, 603–625 (1971).CrossRefzbMATHGoogle Scholar
  24. 24.
    P. L. Gurevich, “Nonlocal problems for elliptic equations in dihedral angles and the Green formula,” Mitteilungen aus dem Mathem. Seminar Giessen, Math. Inst. Univ. Giessen, Germany, 247, 1–74 (2001).MathSciNetGoogle Scholar
  25. 25.
    P. L. Gurevich, “Nonlocal elliptic problems with nonlinear transformations of variables near the conjugation points,” Izv. Math., 67, No. 6, 1149–1186 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    P. L. Gurevich, “Asymptotics of solutions for nonlocal elliptic problems in plane angles,” J. Math. Sci., 120, No. 3, 1295–1312 (2004).MathSciNetCrossRefGoogle Scholar
  27. 27.
    P. L. Gurevich, “On smoothness of generalized solutions of nonlocal elliptic problems on a plane,” Dokl. Ross. Akad. Nauk, 398, No. 3, 295–299 (2004).MathSciNetGoogle Scholar
  28. 28.
    P. L. Gurevich, “Generalized solutions of nonlocal elliptic problems,” Mat. Zametki, 77, No. 5, 665–682 (2005).MathSciNetGoogle Scholar
  29. 29.
    P. L. Gurevich, “On a stability of an index of unbounded nonlocal operators in Sobolev spaces,” Proc. Steklov Inst. Math., 255, 116–135 (2006).MathSciNetCrossRefGoogle Scholar
  30. 30.
    P. L. Gurevich, “On nonstability of an index of some nonlocal elliptic problems,” Tr. Semin. Petrovskogo, 26, 179–194, (2007).MathSciNetGoogle Scholar
  31. 31.
    P. L. Gurevich, “Asymptotics of solutions for nonlocal elliptic problems in plane bounded domains,” Funct. Differ. Equ., 10, Nos. 1–2, 175–214, (2003).MathSciNetzbMATHGoogle Scholar
  32. 32.
    P. L. Gurevich, “Solvability of nonlocal elliptic problems in Sobolev spaces, I,” Russ. J. Math. Phys., 10, No. 4, 436–466 (2003).MathSciNetzbMATHGoogle Scholar
  33. 33.
    P. L. Gurevich, “Solvability of nonlocal elliptic problems in Sobolev spaces, II,” Russ. J. Math. Phys.,, 11, No. 1, 1–44 (2004).MathSciNetzbMATHGoogle Scholar
  34. 34.
    P. L. Gurevich, “The consistency conditions and the smoothness of generalized solutions of nonlocal elliptic problems,” Adv. Differ. Equ., 11, No. 3, 305–360 (2006).MathSciNetzbMATHGoogle Scholar
  35. 35.
    P. L. Gurevich, “Unbounded perturbations of two-dimensional diffusion processes with nonlocal boundary conditions,” Dokl. Math., 76, No. 3, 891–895 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    P. L. Gurevich, “Smoothness of generalized solutions for higher-order elliptic equations with nonlocal boundary conditions,” J. Differ. Equ., 245, 1323–1355 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    P. L. Gurevich, “On the existence of a Feller semigroup with an atomic measure in the nonlocal boundary condition,” Proc. Steklov Inst. Math., 260, 164–179 (2008).MathSciNetCrossRefGoogle Scholar
  38. 38.
    P. L. Gurevich, “Bounded perturbations of two-dimensional diffusion processes with nonlocal conditions near the boundary,” Math. Notes, 83, No. 2, 162–179 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    P. L. Gurevich, “On the nonexistence of Feller semigroups in the nontransversal case,” Russ. Math. Surv., 63, No. 3, 565–566 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    P. L. Gurevich, W. Jager, and A. L. Skubachevskii, “On the existence of periodic solutions to some nonlinear thermal control problems,” Dokl. Math., 77, No. 1, 27–30 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    P. L. Gurevich and A. L. Skubachevskii, “On the Fredholm and unique solvability of nonlocal elliptic problems in multidimensional domains,” Trans. Moscow Math. Soc., 68, 261–336 (2007).MathSciNetCrossRefGoogle Scholar
  42. 42.
    A. K. Gushchin, “The compactness condition for a class of operators and its application to the investigation of the solvability of nonlocal problems for elliptic equations,” Sb. Math., 193, No. 5, 649–668 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    A. K. Gushchin and V. P. Mikhailov, “On the solvability of nonlocal problems for elliptic equations of second order,” Mat. Sb., 185, 121–160 (1994).Google Scholar
  44. 44.
    A. K. Gushchin and V. P. Mikhailov, “On the continuity of solutions of one class of nonlocal problems for an elliptic equation,” Mat. Sb., 186, No. 2, 37–58 (1995).MathSciNetGoogle Scholar
  45. 45.
    V. A. Il’in, “Necessary and sufficient conditions of Riesz basis of root vectors of discontinuous operators of second order,” Differ. Equ., 22, No. 12, 2059–2071 (1986).Google Scholar
  46. 46.
    V. A. Il’in and R. I. Moiseev, “An a priori estimate of the solution of a problem associated to a nonlocal boundary value problem of first type,” Differ. Uravn., 24, No. 5, 795–804 (1988).zbMATHGoogle Scholar
  47. 47.
    V. A. Il’in and R. I. Moiseev, “Two-dimensional nonlocal boundary value problem for the Poisson operator in differential and difference treatments,” Mat. Model., 2, No. 8, 139–160 (1990).MathSciNetzbMATHGoogle Scholar
  48. 48.
    Y. Ishikawa, “A remark on the existence of a diffusion process with nonlocal boundary conditions,” J. Math. Soc. Jpn., 42, 171—184 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin (1995).zbMATHGoogle Scholar
  50. 50.
    K. Yu. Kishkis, “The index of a Bitsadze–Samarskii problem for harmonic functions,” Differ. Equ., 24, 83–87 (1988).MathSciNetzbMATHGoogle Scholar
  51. 51.
    K. Yu. Kishkis, “On a theory of nonlocal problems for the Laplace equation,” Differ. Equ., 25, 59–64 (1989).MathSciNetGoogle Scholar
  52. 52.
    O. A. Kovaleva and A. L. Skubachevskii, “Solvability of nonlocal elliptic problems in weighted spaces,” Mat. Zametki, 67, No. 6, 882–898 (2000).MathSciNetGoogle Scholar
  53. 53.
    V. A. Kondrat’ev, “Boundary-value problems for elliptic equations in domains with conical or angular points,” Trans. Moscow Math. Soc., 16 (1967).Google Scholar
  54. 54.
    V. A. Kondrat’ev, “Features of solutions of Dirichlet problem for second order equaltions at the neighborhood of a rib,” Differ. Equ., 13, No. 11, 2026–2032 (1977).zbMATHGoogle Scholar
  55. 55.
    A. M. Krall, “The development of general differential and general differential-boundary systems,” Rocky Mountain J. Math., 5, 493–542 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    S. G. Krein, Linear Equations in Banach Spaces, Birkhäuser, Boston–Basel–Stuttgart (1982).zbMATHGoogle Scholar
  57. 57.
    J.-L. Lions and E. Magenes, Non-Homogeneous Boundary-Value Problems and Applications. I, Springer-Verlag, New York–Heidelberg–Berlin (1972).Google Scholar
  58. 58.
    V. G. Maz’ya and B. A. Plamenevskii, “L p-Estimates of solutions of elliptic boundary-value problems in domains with edges,” Trans. Moscow Math. Soc., 37 (1980).Google Scholar
  59. 59.
    E. Mitidieri and S. I. Pohozhaev, “Theorems of the Liouville type for some nonlinear problems,” Dokl. Ross. Akad. Nauk, 399, No. 6, 732–736 (2004).Google Scholar
  60. 60.
    E. I. Moiseev, “On spectral characteristics of a nonlocal boundary-value problem,” Differ. Equ., 30, No. 5, 864–872 (1994).MathSciNetGoogle Scholar
  61. 61.
    E. I. Moiseev, “On the absence of the basis property of a system of root vectors of a nonlocal boundary-value problem,” Differ. Equ., 30, No. 12, 2082–2093 (1994).MathSciNetGoogle Scholar
  62. 62.
    N. I. Mushelishvili, Singular Integral Equations [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  63. 63.
    M. A. Mustafin, “Summability by the Abel method with respect to root vectors of nonlocal elliptic problems,” Differ. Equ., 26, No. 1, 167–168 (1990).MathSciNetzbMATHGoogle Scholar
  64. 64.
    S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, De Gruyter Expos. Math., 13, de Gruyter, Berlin (1994).CrossRefzbMATHGoogle Scholar
  65. 65.
    G. G. Onanov and A. L. Skubachevskii, “Differential equations with divergent argument in stationary problems of a deformable body,” Int. Appl. Mech., 15, No. 5, 39–47 (1979).MathSciNetGoogle Scholar
  66. 66.
    G. G. Onanov and E. L. Tsvetkov, “On the minimum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory,” Russ. J. Math. Phys., 3, No. 4, 491–500 (1995).MathSciNetzbMATHGoogle Scholar
  67. 67.
    B. P. Paneah, “On some nonlocal boundary-value problems for linear differential operators,” Math. Notes, 35, No. 3, 425–434 (1984).MathSciNetGoogle Scholar
  68. 68.
    M. Picone, “Equazione integrale traducente il piú generale problema lineare per le equazioni differenziali lineari ordinarie di qualsivoglia ordine,” Acad. Nazionale dei Lincei, Atti dei Convegni, 15, 942–948 (1932).Google Scholar
  69. 69.
    V. V. Pod’yapol’skii, “Completeness and the Abel basis property of a system of root function of a nonlocal problem,” Differ. Equ., 35, No. 4 (1999).Google Scholar
  70. 70.
    V. V. Pod’yapol’skii and A. L. Skubachevskii, “On the main term of spectral asymptotics of nonlocal elliptic problems,” Proc. Conf. Devoted to 75th Anniversary of L. D. Kudryavtsev, (1998) p. 157.Google Scholar
  71. 71.
    F. Riesz and B. Sz.-Nagy, Leçons D’Analyse Fonctionnelle. Akadémiai Kiadó, Budapest (1972).Google Scholar
  72. 72.
    Ya. A. Roitberg, Elliptic Boundary-Value Problems in Spaces of Distributions, Kluwer Academic Publishers, Dordrecht–Boston–London (1996).zbMATHGoogle Scholar
  73. 73.
    Ya. A. Roitberg and Z. G. Sheftel’, “On a class of general nonlocal elliptic problems,” Dokl. Akad. Nauk SSSR, 192, No. 3, 165–181 (1970).Google Scholar
  74. 74.
    Ya. A. Roitberg and Z. G. Sheftel’, “Nonlocal problems for elliptic equations and systems,” Sib. Math. J., 13, No. 1, 165–181 (1972).CrossRefGoogle Scholar
  75. 75.
    A. A. Samarskii, “On some problems differential equations,” Differ. Equ., 16, No. 11, 1925–1935, (1980).MathSciNetGoogle Scholar
  76. 76.
    K. Sato and T. Ueno, “Multidimensional diffusion and the Markov process on the boundary,” J. Math. Kyoto Univ., 4, 529–605 (1965).MathSciNetzbMATHGoogle Scholar
  77. 77.
    M. Schechter, “Nonlocal elliptic boundary-value problems,” Ann. Scuola Norm. Sup. Pisa (3), 20, 421–441 (1966).MathSciNetzbMATHGoogle Scholar
  78. 78.
    A. P. Soldatov, “Bitsadze–Samarskii problem for functions analytic by Duglis,” Differ. Equ., 41, No. 3, 396–407 (2005).MathSciNetCrossRefGoogle Scholar
  79. 79.
    R. V. Shamin, “Nonlocal parabolic problems with the support of nonlocal terms inside a domain,” Funct. Differ. Equ., 10, Nos. 1–2, 307–314 (2003).MathSciNetzbMATHGoogle Scholar
  80. 80.
    A. A. Shkalikov, “On the basis property of eigenfunctions of differential operators with inegral boundary conditions,” Vestn. Mosk. Univ. Ser. I, Mat. Mekh., No. 6, 12–21 (1982).Google Scholar
  81. 81.
    A. L. Skubachevskii, “On some nonlocal elliptic boundary-value problems,” Differ. Equ., 18, No. 9, 1590–1599 (1982).MathSciNetGoogle Scholar
  82. 82.
    A. L. Skubachevskii, “Nonlocal elliptic problems with a parameter,” Mat. Sb., 121 (163), No. 2 (6), 201–210 (1983).Google Scholar
  83. 83.
    A. L. Skubachevskii, “Elliptic problems of Bitsadze and Samarskii,” Dokl. Akad. Nauk SSSR, 278, No. 4, 813–816 (1984).MathSciNetGoogle Scholar
  84. 84.
    A. L. Skubachevskii, “Solvability of elliptic problems with Bitsadze–Samarskii-type boundary-value conditions,” Differ. Equ., 21, No. 4, 701–706 (1985).MathSciNetGoogle Scholar
  85. 85.
    A. L. Skubachevskii, “Elliptic problems with nonlocal conditions near the boundary,” Mat. Sb., 129 (171), 279–302 (1986).MathSciNetGoogle Scholar
  86. 86.
    A. L. Skubachevskii, “On some problem for multidimensional diffusion processes,” Dokl. Akad. Nauk SSSR, 307, 287–292 (1989).Google Scholar
  87. 87.
    A. L. Skubachevskii, “On eigenvalues and eigenfunctions of some nonlocal boundary-value problem,” Differ. Equ., 25, No. 1, 127–136 (1989).MathSciNetGoogle Scholar
  88. 88.
    A. L. Skubachevskii, “Model nonlocal problems for elliptic equations in dihedral angles,” Differ. Equ., 26, 119–131 (1990).MathSciNetGoogle Scholar
  89. 89.
    A. L. Skubachevskii, “Truncation-function method in the theory of nonlocal problems,” Differ. Equ., 27, 128–139 (1991).MathSciNetGoogle Scholar
  90. 90.
    A. L. Skubachevskii, “On the stability of index of nonlocal elliptic problems,” J. Math. Anal. Appl., 160, No. 2, 323–341 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  91. 91.
    A. L. Skubachevskii, “On Feller semigroups for multidimentional processes,” Dokl. Ross. Akad. Nauk, 341, No. 2, 173–176 (1995).MathSciNetGoogle Scholar
  92. 92.
    A. L. Skubachevskii, “Nonlocal elliptic problems and multidimensional diffusion processes,” Russ. J. Math. Phys., 3, 327–360 (1995).MathSciNetGoogle Scholar
  93. 93.
    A. L. Skubachevskii, “On the solvability of nonlocal problems for elliptic systems in infinite angles,” Dokl. Ross. Akad. Nauk, 412, No. 3, 317–320 (2007).MathSciNetGoogle Scholar
  94. 94.
    A. L. Skubachevskii, Nonclassical Boundary-Value Problems, I, J. Math. Sci., 155, No. 2, 199–334 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  95. 95.
    A. L. Skubachevskii, Nonclassical Boundary-Value Problems, II, J. Math. Sci., 166, No. 4, 377–561 (2010).MathSciNetCrossRefGoogle Scholar
  96. 96.
    A. L. Skubachevskii, Asymptotics of Solutions of Nonlocal Elliptic Problems, Proc. Steklov Inst. Math., 269, 225–241 (2010).MathSciNetCrossRefGoogle Scholar
  97. 97.
    A. L. Skubachevskii, Elliptic Functional-Differential Equations and Applications, Birkhäuser, Basel–Boston–Berlin (1997).zbMATHGoogle Scholar
  98. 98.
    A. L. Skubachevskii, “Regularity of solutions for some nonlocal elliptic problem,” Russ. J. Math. Phys., 8, 365–374 (2001).MathSciNetzbMATHGoogle Scholar
  99. 99.
    A. Sommerfeld, “Ein Beitrag zur hydrodinamischen Erklärung der turbulenten Flussigkeitsbewegungen,” in: Proc. Int. Congr. Math., Reale Accad. Lincei, Roma (1909), pp. 115–124.Google Scholar
  100. 100.
    E. M. Stein, Singular Integrals and Differentiability Properties of Functions (1970).Google Scholar
  101. 101.
    K. Taira, Diffusion Processes and Partial Differential Equations, Academic Press, New York–London (1988).zbMATHGoogle Scholar
  102. 102.
    K. Taira, “On the exiestense of Feller semigroups with boundary conditions,” Mem. Amer. Math. Soc., 99, No. 475, 1–65 (1992).MathSciNetGoogle Scholar
  103. 103.
    K. Taira, Semigroups, Boundary-Value Problems, and Markov Processes, Springer-Verlag, Berlin (2004).zbMATHGoogle Scholar
  104. 104.
    Ya. D. Tamarkin, On Some General Problems of Theory of Ordinary Linear Differential Equations [in Russian], Petrograd (1917).Google Scholar
  105. 105.
    A. D. Ventsel’, “On boundary conditions for multidimensional diffusion processes,” Theor. Probab. Appl., 4, 164–177 (1960).CrossRefGoogle Scholar
  106. 106.
    M. I. Vishik, “On general boundary-value problems for elliptic differential equations,” Am. Math. Soc. Transl. II, Ser. 24, 107–172 (1963).Google Scholar
  107. 107.
    V. V. Vlasov and J. Wu, “Sharp estimates of solutions to neutral equations in Sobolev spaces,” Funct. Differ. Equ., 12, Nos. 3–4, 437–461 (2005).MathSciNetzbMATHGoogle Scholar
  108. 108.
    L. R. Volevich, “Solvability of boundary problems for general elliptic systems,” Am. Math. Soc. Transl. II., Ser. 67, 182–225 (1968).zbMATHGoogle Scholar
  109. 109.
    S.Watanabe, “Construction of diffusion processes withWentzell’s boundary conditions by means of Poisson point processes of Brownian excursions,” Banach Center Publ., 5, 255–271 (1979).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Free University of BerlinBerlinGermany
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations