Advertisement

Journal of Mathematical Sciences

, Volume 181, Issue 5, pp 632–667 | Cite as

Notes to the proof of a weighted Korn inequality for an elastic body with peak-shaped cusps

  • S. A. NazarovEmail author
Article

We present the proof of the weighted anisotropic Korn inequality in a three-dimensional domain with peak-shaped cusps on the boundary. We verify the asymptotic accuracy of distribution of multipliers at the components of displacement vector and their derivatives in the corresponding weighted norm. We indicate conditions on a peak cusp under which the natural energy class is not embedded into a Sobolev or Lebesgue class. In the last case, the operator of elasticity problems possesses the continuous spectrum provoking wave processes in a finite volume (“black holes” for elastic waves). We also discuss possible generalizations of the result and open questions. Bibliography: 39 titles. Illustrations: 9 figures.

Keywords

Black Hole Elastic Wave Elastic Body Elasticity Problem Hardy Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Korn, “Solution générale du probléme d’équilibre dans la théorie l’élasticité dans le cas où les efforts sont donnés à la surface,” Ann. Univ. Toulouse, 165–269 (1908).Google Scholar
  2. 2.
    K. O. Friedrichs, “On the boundary value problems of the theory of elasticity and Korn’s inequality,” Ann. Math. 48, 441–471 (1947).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    J. Gobert, “Une inégalité fondamentale de la theorie de l’elasticite,” Bull. Soc. Roy. Sci. Liege 31, 182–191 (1962).MathSciNetzbMATHGoogle Scholar
  4. 4.
    J. Nečas, Les méthodes in théorie des équations elliptiques, Masson-Academia, Paris-Prague (1967).zbMATHGoogle Scholar
  5. 5.
    P. P. Mosolov and V. P. Myasnikov, “A proof of Korn’s inequality [in Russian]”, Dokl. Akad. Nauk SSSR 201, No. 1, 36–39 (1971); English transl.: Sov. Math., Dokl. 12, 1618–1622 (1971).zbMATHGoogle Scholar
  6. 6.
    G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer, Berlin (1976).zbMATHCrossRefGoogle Scholar
  7. 7.
    V. A. Kondrat’ev and O. A. Oleinik, “Boundary-value problems for a system in elasticity theory in unbounded domains. Korn’s inequalities [in Russian], Usp. Mat. Nauk 43, No. 5, 55–98 (1988); English transl.: Russ. Math. Surv. 43, No. 5, 65–119 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    B. Bernstein and R. A. Toupin, “Korn inequality for the sphere and circle,” Arch. Ration. Mech. Anal. 6, 51–64 (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    L. E. Payne and H. F. Weinberger, “On Korn’s inequality,” Arch. Ration. Mech. Anal. 8, No. 2, 89–98 (1961).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    C. O. Horgan, “Korn’s inequalities and their application in continuum mechanics,” SIAM Review 37, 491–511 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Yu. N. Rabotnov, Mechanics of Deformable Solilds [in Russian], Nauka, M. (1988).Google Scholar
  12. 12.
    V. L. Berlichevskii, Variational Methods of Continuum Mechanics [in Russian], Nauka, M. (1983).Google Scholar
  13. 13.
    B. A. Shojkhet, “On asymptotically sharp equations of thin plates of complex structure” [in Russian], Prikl. Mat. Mech. 37 (1973), No. 5, 913–924.Google Scholar
  14. 14.
    S. A. Nazarov, “The Korn inequalities which are asymptotically sharp for thin domains” [in Russian], Vestn. St. Peterbg. Univ., Ser. I, Mat. Mekh. Astron. (1992), No. 2, 19–24; English transl.: Vestn. St. Peterbg. Univ., Math. 25 (1992), No. 2, 18–22.zbMATHGoogle Scholar
  15. 15.
    D. Cioranescu, O. A. Oleinik, and G. Tronel, “Korn’s inequalities for frame type structures and junctions with sharp estimates for the constants,” Asympt. Anal. 8, 1–14 (1994).MathSciNetzbMATHGoogle Scholar
  16. 16.
    S. A. Nazarov, “Justification of the asymptotic theory of thin rods. Integral and pointwise estimates” [in Russian], Probl. Mat. Anal. 17, 101–152 (1997); English transl.: J. Math Sci. (New YOrk) 97, No. 4, 4245–4279 (1999).MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. A. Nazarov, “Korn inequalities for elastic junctions of massive bodies, thin plates, and rods” [in Russian], Usp. Mat. Nauk. 63, No. 1, 37–110 (2008); English transl.: Russ. Math. Surv. 63, No. 1, 35–107 (2008).zbMATHCrossRefGoogle Scholar
  18. 18.
    S. A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates [in Russian], Nauchanaya Kniga (IDMI), Novosibirsk (2002).Google Scholar
  19. 19.
    S. A. Nazarov, “The spectrum of the elasticity problem for a spiked body” [in Russian], Sib. Mat. Zh. 49, No 5, 1105–1127 (2008); English transl.: Sib. Math. J. 49, No 5, 874–893 (2008).MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. A. Nazarov, “Trapped modes in a cylindrical elastic waveguide with a damping gasket” [in Russian], Zh. Vychisl. Mat. Mat. Fiz. 48, No. 5, 863–881 (2008). English transl.: Comput. Math. Math. Phys. 48, No. 5, 816–833 (2008);MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. A. Nazarov, “Natural vibrations of an elastic body with a heavy rigid pike-shaped inclusion” [in Russian], Prikl. Mat. Mekh. 72, No. 5, 775–787 (2008); English transl.: J. Appl. Math. Mech. 72, No. 5, 561–570 (2008).MathSciNetCrossRefGoogle Scholar
  22. 22.
    F. L. Bakharev and S. A. Nazarov, “On the structure of the spectrum for the elasticity problem in a body with a supersharp spike” [in Russian], Sib. Mat. Zh. 50, No 4, 746–756 (2009); English transl.: Sib. Math. J. 50, No 4, 587–595 (2009).MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. A. Mironov, “Propagation of a flexural wave in a plate whose thickness smoothly decreases to zero on a finite interval” [in Russian], Acoust. J. 34, No. 3, 546–547 (1988).MathSciNetGoogle Scholar
  24. 24.
    M. A. Mironov, “Exact solutions to equations of transverse oscillations of a rod with a special law of varying the cross-section along its axis” [in Russian], In: Proc. the XIth All-Union Acoustic Conference. Section L, Acoust. Inst. M. (1991).Google Scholar
  25. 25.
    V. V. Krylov, “New type of vibration dampers utilizing the effect of acoustic ”black holes”,” Acta Acust.united with Acustica 90, No. 5, 830–837 (2004).Google Scholar
  26. 26.
    V. V. Krylov and F. J. B. S. Tilman, “Acoustic ‘black holes’ for flexural waves as effective vibration dampers,” J. Sound Vibration 274, 605–619 (2004).CrossRefGoogle Scholar
  27. 27.
    S. A. Nazarov, “Weighted Korn inequalities in paraboloidal domains” [in Russian], Mat. Zametki 62, No. 5, 751–765 (1997); 63, No. 4, 640 (1998); English transl.: Math. Notes 62, No. 5, 629–641 (1997); 63, No. 4, 640 (1998); 63, No. 4, 565 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary value problems and the algebraic description of their attributes” [in Russian], Usp. Mat. Nauk 54, No. 5, 77–142 (1999); English transl.: Russ. Math. Surv. 54, No. 5, 947–1014 (1999). 142 (1999).zbMATHCrossRefGoogle Scholar
  29. 29.
    O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973); English transl.: Springer, New York etc. (1985).Google Scholar
  30. 30.
    S. A. Nazarov and J. Taskinen, “On the spectrum of the Steklov problem in a domain with a peak” [in Russian], No. 1, 56–65 (2008); English transl.: Vestn. St. Petersbg. Univ., Math. 41, No. 1, 45–52 (2008).Google Scholar
  31. 31.
    S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, M. (1970). Nazarov, and J. Taskinen, “A criterion for the existence of the essential spectrum for beak-shaped elastic bodies,” J. Math. Pures Appl. 92, No. 6, 628–650 (2009).Google Scholar
  32. 32.
    S. A. Nazarov and O. P. Polyakova, “The asymptotic form of the stress-strain state near a spatial singularity of the boundary of the “beak tip” type,” Prikl. Mat. Mekh. 57, No. 5, 127–142 (1993); English transl.: J. Appl. Math. Mech. 57, No.5, 887–902 (1993).MathSciNetCrossRefGoogle Scholar
  33. 33.
    G. Cardone, S. A. Nazarov, and J. Taskinen, ““Absorption” effect for elastic waves by the beak-shaped boundary irregularity” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 425, No. 2, 182–186 (2009); English transl.: Dokl. Phys. 54, No. 3, 146–150 (2009).zbMATHCrossRefGoogle Scholar
  34. 34.
    G. Cardone, S. A. Nazarov, and J. Taskinen, “A criterion for the existence of the essential spectrum for beak-shaped elastic bodies,” J. Math. Pures Appl. 92, No. 6, 628–650 (2009).MathSciNetzbMATHGoogle Scholar
  35. 35.
    S. A. Nazarov and J. Taskinen, “Radiation conditions at the top of a rotational cusp in the theory of water-waves,” Math. Model. Numer. Anal. 45, 947–979 (2011).MathSciNetCrossRefGoogle Scholar
  36. 36.
    M. S. Birman and M. Z. Solomyak, Spectral Theory and Self-Adjoint Operators in Hilbert Space [in Russian], Leningr. Univ. Press, Leningrad (1980); English transl.: Reidel, Dordrecht (1987).Google Scholar
  37. 37.
    V. G. Maz’ya and B. A. Plamenevskij, “Estimates in L p and in Hölder classes and the Miranda–Agmon principle for solutios of elliptic boundary value problems in domains with singular points on the boundary” [in Russian] Math. Nachr. 81, 25–82 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    V. A. Kozlov, V. G. Maz’ya, aND J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Am. Math. Soc., Providence, RI (1997).zbMATHGoogle Scholar
  39. 39.
    A. Campbell, S. A. Nazarov, and G. H. Sweers, “Spectra of two-dimensional models for thin plates with sharp edges,” SIAM J. Math. Anal. 42, No. 6, 3020–3044 (2010).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Institute for Problems in Mechanical Engineering RASSt. PetersburgRussia

Personalised recommendations