Journal of Mathematical Sciences

, Volume 180, Issue 3, pp 315–329

Big and small elements in Chevalley groups


Let \( \tilde{G} \) be a reductive algebraic group, which is defined and split over a field K. Here the Zariski open subset \( \mathfrak{B} \) of the group \( \tilde{G} \) that consists of elements such that their conjugacy classes intersect the Big Bruhat Cell is considered. In particular, a description is given for the set \( \mathfrak{B}(K) \) in the case \( \tilde{G} = {\text{G}}{{\text{L}}_n} \), SLn. Bibliography: 16 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Borel, Linear Algebraic groups, 2nd enl. ed., Graduate texts in mathematics, 126, Springer-Verlag, New York (1991).CrossRefMATHGoogle Scholar
  2. 2.
    N. Bourbaki, Éléments de Mathématique. Groupes et Algèbres de Lie, Chaps. IV, V, VI, 2ème èd., Masson, Paris (1981).Google Scholar
  3. 3.
    R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, John Wiley & Sons, Chichester et al. (1985).MATHGoogle Scholar
  4. 4.
    Key Yuen Chan, Jiang-Hua, and Simon Kai Ming To, “On intersections of conjugacy classes and Bruhat cells,” Transformation groups, 15(2), 243–260 (2010).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    E. W. Ellers and N. Gordeev, “Intersection of conjugacy classes with Bruhat cells in Chevalley groups,” Pacific J. Math., 214(2), 245–261 (2004).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    E. W. Ellers and N. Gordeev, “Intersection of conjugacy classes with Bruhat cells in Chevalley groups: The cases SLn(K), GLn(K),” J. Pure Appl. Algebra, 209, 703–723 (2007).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, 21, Springer-Verlag, New York–Heidelberg–Berlin (1975).MATHGoogle Scholar
  8. 8.
    N. Kawanaka, “Unipotent elements and characters of finite Chevalley groups,” Osaka J. Math., 12(2), 523–554 (1975).MATHMathSciNetGoogle Scholar
  9. 9.
    G. Lusztig, “From conjugacy classes in the Weyl group to unipotent classes,” arxiv:1003.0412v4 (2010).Google Scholar
  10. 10.
    G. Lusztig, “On C-small conjugacy classes in a reductive group,” arxiv:1005:4313v1 (2010).Google Scholar
  11. 11.
    J. N. Spaltenstein, “Classes unipotentes et sous-groupes de Borel,” Lect. Notes Math., 946, Springer-Verlag, Berlin–Heidelberg–New York (1980).Google Scholar
  12. 12.
    T. A. Springer, Linear Algebraic Groups, 2nd ed., Progress in Mathematics, 9, Birkhäuser Boston, Boston (1998).CrossRefMATHGoogle Scholar
  13. 13.
    T. A. Springer and R. Steinberg, “Conjugacy classes,” Lect. Notes Math., 131, Springer-Verlag, Berlin–Heidelberg–New York (1970).Google Scholar
  14. 14.
    R. Steinberg, “Regular elements of semisimple algebraic groups,” Inst. Hautes Études Sci. Publ. Math., 25, 49–80 (1965).CrossRefMathSciNetGoogle Scholar
  15. 15.
    N. A. Vavilov, “Bruhat decomposition of two-dimensional transformations,” Vestn. Leningrad. Univ., Mat. Mekh. Astr., 3, 3–7 (1989).Google Scholar
  16. 16.
    N. A. Vavilov and A. A. Semenov, “Bruhat decomposition for long root tori in Chevalley groups,” Zap. Nauchn. Semin. LOMI, 175, 12–23 (1989).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Russian State Pedagogical UniversitySt. PetersburgRussia
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations