Journal of Mathematical Sciences

, Volume 180, Issue 3, pp 315–329

Big and small elements in Chevalley groups


DOI: 10.1007/s10958-011-0645-7

Cite this article as:
Gordeev, N.L. & Ellers, E.W. J Math Sci (2012) 180: 315. doi:10.1007/s10958-011-0645-7

Let \( \tilde{G} \) be a reductive algebraic group, which is defined and split over a field K. Here the Zariski open subset \( \mathfrak{B} \) of the group \( \tilde{G} \) that consists of elements such that their conjugacy classes intersect the Big Bruhat Cell is considered. In particular, a description is given for the set \( \mathfrak{B}(K) \) in the case \( \tilde{G} = {\text{G}}{{\text{L}}_n} \), SLn. Bibliography: 16 titles.

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Russian State Pedagogical UniversitySt. PetersburgRussia
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations