Journal of Mathematical Sciences

, Volume 180, Issue 3, pp 269–277 | Cite as

The Eisenstein reciprocity law for formal Lubin–Tate groups


A generalized norm residue symbol on Lubin–Tate formal groups is studied. The triviality of this symbol in the case where the first argument belongs to the definition field of the formal group is investigated. Explicit formulas for the generalized norm residue symbol ( , )F,n are used. To this end, a restriction on the expansion of the first argument in powers of a uniformizer is removed. Bibliography: 6 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Eisentein, “Über ein einfaches Mittel zur Auffindung der höheren Reciprocitätsgesetze und der mit ihnen zu verbindenden Ergänzungssätze,” J. reinde ang. Mathematik, 39, 351–364 (1850).CrossRefGoogle Scholar
  2. 2.
    S. V. Vostokov, “An explicit form of the reciprocity law,” Izv. AN SSSR, Ser. Mat., 42, No. 6, 1288–1321 (1978).MATHMathSciNetGoogle Scholar
  3. 3.
    S. V. Vostokov, “Norm pairing in formal modules,” Izv. AN SSSR Ser. Mat., 43, No. 4, 765–794 (1979).MathSciNetGoogle Scholar
  4. 4.
    I. B. Fesenko and S. V. Vostokov, Local Fields and Their Extensions, 2nd Edition, Amer. Math. Soc., Providence, Rhode Island (2002).MATHGoogle Scholar
  5. 5.
    Algebraic Number Theory, G. Cassels and A. Frölich eds. [Russian translation], Mir, Moscow (1969).Google Scholar
  6. 6.
    S. V. Vostokov, M. A. Ivanov, and G. K. Pak, “On a paper of Hasse on the Eisenstein reciprocity law,” Zap. Nauchn. Semin. POMI, 365, 122–129 (2009).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations