Journal of Mathematical Sciences

, Volume 168, Issue 3, pp 334–348 | Cite as

Calculations in exceptional groups over rings

Article
  • 38 Downloads

In the present paper, we discuss a major project whose goal is to develop theoretical background and working algorithms for calculations in exceptional Chevalley groups over commutative rings. We recall some basic facts concerning calculations in groups over fields, and indicate complications arising in the ring case. Elementary calculations as such are no longer conclusive. We describe the basics of calculations with elements of exceptional groups in their minimal representations, which allow one to reduce calculations in the group itself to calculations in subgroups of smaller rank. For all practical purposes, such calculations are much more efficient than localization methods. Bibliography: 147 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Abe, “Chevalley groups over loalrings,” Tôhoku Math. J., 21, No. 3, 474–494 (1969).MATHGoogle Scholar
  2. 2.
    E. Abe, “Coverings of twisted Chevalley groups over commutative rings,” Sci. Rep. Tokyo Kyoiku Daigaku, 13, 194–218 (1977).MATHGoogle Scholar
  3. 3.
    E. Abe, “White head groups of Chevalley groups over polynomial rings,” Comm. Algebra, 11, No. 12, 1271–1307 (1983).MATHMathSciNetGoogle Scholar
  4. 4.
    E. Abe, “White head groups of Chevalley groups over Laurent polynomial rings,” Preprint Univ. Tsukuba, 1–14 (1988).Google Scholar
  5. 5.
    E. Abe, “Chevalley groups over commutative rings,” in: Proceedings of the Conference of Radial Theory, Sendai (1988), pp. 1–23.Google Scholar
  6. 6.
    E. Abe, “Normal subgroups of Chevalley groups over commutative rings,” Contemp. Math., 83, 1–17 (1989).Google Scholar
  7. 7.
    E. Abe, “Automorphisms of Chevalley groups over commutative rings,” St. Petersburg Math. J., 5, No.2, 74–90 (1993).Google Scholar
  8. 8.
    E. Abe, “Chevalley groups over commutative rings. Normal subgroups and automorphisms,” Contemp. Math., 184, 13–23 (1995).Google Scholar
  9. 9.
    E. Abe and J. Hurley, “Centers of Chevalley groups over commutative rings,” Comm. Algebra, 16, No.1, 57–74 (1988).MATHMathSciNetGoogle Scholar
  10. 10.
    E. Abe and J. Morita, “Some Tits systems with affine Weyl groups in Chevalley groups over Dedekind domains,” J. Algebra, 115, No. 2, 450–465 (1988).MATHMathSciNetGoogle Scholar
  11. 11.
    E. Abe and K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 28, No. 1, 185–198 (1976).MATHMathSciNetGoogle Scholar
  12. 12.
    S. I. Adian and J. Mennicke, “Bounded generation of \( {\text{S}}{{\text{L}}_n}\left( \mathbb{Z} \right) \),” Internat. J. Algebra Comput., 2, No. 4, 357–365 (1992).MATHMathSciNetGoogle Scholar
  13. 13.
    M. Aschbacher, “The 27-dimensional module for E6. I–IV,” Invent. Math., 89, No. 1, 159–195 (1987); J. London Math. Soc., 37, 275–293 (1988); Trans. Amer. Math. Soc., 321, 45–84 (1990); J. Algebra, 191, 23–39 (1991).MathSciNetGoogle Scholar
  14. 14.
    M. Aschbacher, “Some multilinear forms with large isometry groups,” Geom. Dedicata, 25, No. 1–3, 417–465 (1988).MATHMathSciNetGoogle Scholar
  15. 15.
    J. C. Baez, “The octonions,” Bull. Amer. Math. Soc., 39, 145–205 (2002).MATHMathSciNetGoogle Scholar
  16. 16.
    A. Bak, “Non-abelian K-theory: the nilpotent class of K1 and general stability,” K-Theory, 4, 363–397 (1991).MATHMathSciNetGoogle Scholar
  17. 17.
    A. Bak, R. Hazrat, and N. Vavilov, “Localization-completion strikes again: relative K1 is nilpotent by abelian,” J. Pure Appl. Algebra, 213, 1075–1085 (2009).MATHMathSciNetGoogle Scholar
  18. 18.
    A. Bak and N. Vavilov, “Normality of the elementary subgroup functors,” Math. Proc. Cambridge Philos. Soc., 118, No. 1, 35–47 (1995).MATHMathSciNetGoogle Scholar
  19. 19.
    H. Bass, J. Milnor, and J.-P. Serre, “Solution of the congruence subgroup problem for SLn(n≥3) and Sp2n (n≥2),” Inst. Hautes Études Sci. Publ. Math., No. 33, 59–137 (1967).MATHMathSciNetGoogle Scholar
  20. 20.
    A. Borel, “Properties and linear representations of Chevalley groups,” in: Seminar on Algebraic Groups and Related Finite Groups, Springer-Verlag, Berlin (1970), pp. 1–55.Google Scholar
  21. 21.
    W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I. The user language,” J. Symbolic Comput., 24, No. 3–4, 235–265 (1997).MATHMathSciNetGoogle Scholar
  22. 22.
    E. I. Bunina, “Automorphisms of adjoint Chevalley groups of types Al, Dl, El over loalrings,” preprint, arXiv:math/0702046, 1–20 (2007).Google Scholar
  23. 23.
    E. I. Bunina, “Automorphisms of Chevalley groups of type F4 over loalrings with 1/2,” preprint, arXiv:math/0907.5592, 1–23 (2009).Google Scholar
  24. 24.
    D. Carter and G. Keller, “Bounded elementary generation of \( {\text{S}}{{\text{L}}_n}\left( \mathcal{O} \right) \),” Amer. J. Math., 105, 673–687 (1983).MATHMathSciNetGoogle Scholar
  25. 25.
    D. Carter and G. Keller, “Elementary expressions for unimodular matrices,” Comm. Algebra, 12, 379–389 (1984).MATHMathSciNetGoogle Scholar
  26. 26.
    R. Carter, Simple Groups of Lie Type, Wiley, London-New York-Sydney (1972).MATHGoogle Scholar
  27. 27.
    R. W. Carter and Chen Yu, “Automorphisms of affine Kac-Moody groups and related Chevalley groups over rings,” J. Algebra, 155, 44–94 (1993).MATHMathSciNetGoogle Scholar
  28. 28.
    B. Chang, “Generators of Chevalley groups over \( \mathbb{Z} \),” Canad. J. Math., 38, No. 2, 387–396 (1986).MATHMathSciNetGoogle Scholar
  29. 29.
    Chen Yu, “Isomorphic Chevalley groups over integral domains,” Rend. Sem. Mat. Univ. Padova, 92, 231–237 (1994).MATHMathSciNetGoogle Scholar
  30. 30.
    Chen Yu, “On representations of elementary subgroups of Chevalley groups over algebras,” Proc. Amer. Math. Soc., 123, No. 8, 2357–2361 (1995).MATHMathSciNetGoogle Scholar
  31. 31.
    Chen Yu, “Automorphisms of simple Chevalley groups over \( \mathbb{Q} \)-algebras,” Tôhoku Math. J., 348, 81–97 (1995).Google Scholar
  32. 32.
    Chen Yu, “Isomorphisms of adjoint Chevalley groups over integral domains,” Trans. Amer. Math. Soc., 348, No. 2, 521–541 (1996)MATHMathSciNetGoogle Scholar
  33. 33.
    Chen Yu, “Isomorphisms of Chevalley groups over algebras,” J. Algebra, 226, 719–741 (2000).MATHMathSciNetGoogle Scholar
  34. 34.
    A. M. Cohen and R. H. Cushman, “Gröbner bases and standard monomial theory,” in: Computational Algebraic Geometry, Progr. Math., 109, Birkhäuser Boston, Boston (1993), pp. 41–60.Google Scholar
  35. 35.
    A. M. Cohen, W. A. de Graaf, and L. Rónyai, “Lie algebraic computation,” Comput. Phys. Comm., 97, 53–62 (1996).MATHMathSciNetGoogle Scholar
  36. 36.
    A. M. Cohen, W. A. de Graaf, and L. Rónyai, “Computations in finite-dimensional Lie algebras,” Discrete Math. Theor. Comput. Sci., 1, 129–138 (1997).MATHMathSciNetGoogle Scholar
  37. 37.
    A. M. Cohen and S. H. Murray, “Algorithm for Lang's theorem,” arXiv:math.GR/0506068, 1–29 (2005).Google Scholar
  38. 38.
    A. M. Cohen, S. H. Murray, and D. E. Taylor, “Computing in groups of Lie type,” Math. Comp., 73, 1477–1498 (2004).MATHMathSciNetGoogle Scholar
  39. 39.
    A. M. Cohen, S. Haller, and S. H. Murray, “Computing in unipotent and reductive algebraic groups,” LMS J. Comput. Math., 11, 343–366 (2008).MathSciNetGoogle Scholar
  40. 40.
    B. N. Cooperstein, “The fifty-six-dimensional module for E7. I. A four form for E7J. Algebra, 173, 361–389 (1995).MATHMathSciNetGoogle Scholar
  41. 41.
    D. L. Costa and G. E. Keller, “On the normal subgroups of G2(A),” Trans. Amer. Math. Soc., 351, No. 12, 5051–5088 (1999).MATHMathSciNetGoogle Scholar
  42. 42.
    J. Faulkner, “Hopf duals, algebraic groups and Jordan pairs,” J. Amer. Math. Soc., 279, No. 1, 91–120 (2004).MATHMathSciNetGoogle Scholar
  43. 43.
    The GAP group, Aachen and St. Andrews, GAP, Groups, Algorithms and Programming, Version 4.1 (1999), http://gap-system.org.
  44. 44.
    M. Gek, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, “Chevie - a system for computing and processing generic character tables,” Appl. Algebra Engrg. Comm. Comput., 7, No. 3, 175–210 (1996).MathSciNetGoogle Scholar
  45. 45.
    P. Gilkey and G. M. Seitz, “Some representations of exceptional Lie algebras,” Geom. Dedicata, 25, No. 1–3, 407–416 (1988).MATHMathSciNetGoogle Scholar
  46. 46.
    D. R. Grayson, “SK1 of an interesting principal ideal domain,” J. Pure Appl. Algebra, 20, 157–163 (1981).MATHMathSciNetGoogle Scholar
  47. 47.
    R. I. Griess, “A Moufang loop, the exceptional Jordan algebra and a cubic form in 27 variables,” J. Algebra, 131, 281–293 (1990).MATHMathSciNetGoogle Scholar
  48. 48.
    S. Haller, “Computing Galois cohomology and forms of linear algebraic groups,” 1–91 (2005).Google Scholar
  49. 49.
    R. Hazrat, “Dimension theory and non-stable K1 of quadratic module,” K-theory, 27, 293–327 (2002).MATHMathSciNetGoogle Scholar
  50. 50.
    R. Hazrat, V. Petrov, and N. Vavilov, “Relative subgroups in Chevalley groups,” 1–13, submitted to J. K-Theory (2009).Google Scholar
  51. 51.
    R. Hazrat and N. Vavilov, “K1 of Chevalley groups are nilpotent,” J. Pure Appl. Algebra, 179, 99–116 (2003).MATHMathSciNetGoogle Scholar
  52. 52.
    R. Hazrat and N. Vavilov, “Bak's work on K-theory of rings (with an appendix by Max Karoubi),” J. K-Theory, 4, No. 1, 1–65 (2009).MATHMathSciNetGoogle Scholar
  53. 53.
    R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “Relative standard commutator formula: the case of Chevalley groups,” J. Pure Appl. Algebra (2010), to appear.Google Scholar
  54. 54.
    D. Holt, B. Eick, and E. A. O'Brien, Handbook of Computational Group Theory, Chapman & Hall, Boca Raton (2005).MATHGoogle Scholar
  55. 55.
    R. B. Howlett, L. J. Rylands, and D. E. Taylor, “Matrix generators for exceptional groups of Lie type,” J. Symbolic Comput., 4, 429–445 (2001).MathSciNetGoogle Scholar
  56. 56.
    F. Ischebeck, “Hauptidealringe mit nichttrivialer SK1-Gruppe,” Arch. Math., 35, 138–139 (1980).MATHMathSciNetGoogle Scholar
  57. 57.
    J. C. Jantzen, Representations of Algebraic Groups, Academic Press, New York (1987).MATHGoogle Scholar
  58. 58.
    W. van der Kallen, “Another presentation for Steinberg groups,” Indag. Math., 39, No. 4, 304–312 (1977).MathSciNetGoogle Scholar
  59. 59.
    W. van der Kallen, “\( {\text{S}}{{\text{L}}_3}\left( {\mathbb{C}\left[ x \right]} \right) \) does not have bounded word length,” Lecture Notes Math., 966, 357–361 (1982).Google Scholar
  60. 60.
    W. van der Kallen and M. R. Stein, “On the Schur multiplier of Steinberg and Chevalley groups over commutative rings,” Math. Z., 155, 83–94 (1977).MATHMathSciNetGoogle Scholar
  61. 61.
    V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring,” Math. USSR Sbornik, 34, 655–669 (1978).Google Scholar
  62. 62.
    B. Kostant, “Groups over \( \mathbb{Z} \),” in: Algebraic Groups and Discontinous Subgroups, Proc. Symp. Pure Math., 9 (1966), pp. 90–98.Google Scholar
  63. 63.
    M. A. A. van Leeuwen, A. M. Cohen, and B. Lisser, LiE Manual, l CWI/CAN, Amsterdam (1992); http://young.sp2mi.univ-poitiers.fr/mar/Lie.
  64. 64.
    H. W. Lenstra, “Grothendieck groups of Abelian group rings,” J. Pure Appl. Algebra, 20, 173–193 (1981).MATHMathSciNetGoogle Scholar
  65. 65.
    W. Lihtenstein, “A system of quadrics describing the orbit of the highest weight vector,” Proc. Amer. Math. Soc., 84, No. 4, 605–608 (1982).MathSciNetGoogle Scholar
  66. 66.
    O. Loos, “On algebraic groups defined by Jordan pairs,” J. Amer. Math. Soc., 74, 23–66 (1979).MATHMathSciNetGoogle Scholar
  67. 67.
    J. Lurie, “On simply laced Lie algebras and their minuscule representations,” Comment. Math. Helv., 166, 515–575 (2001).MathSciNetGoogle Scholar
  68. 68.
    A. Yu. Luzgarev, “On over groups of E(E6, R) and E(E7, R) in their minimal representations,” J. Math. Sci., 319, 216–243 (2004).MATHMathSciNetGoogle Scholar
  69. 69.
    A. Yu. Luzgarev, “Over groups of F 4 in E 6,” St. Petersburg Math. J., 20, No. 6, 148–185 (2008).MathSciNetGoogle Scholar
  70. 70.
    A. Yu. Luzgarev, “Characteristic free quartic invariants for G(E 7, R),” Russian Acad. Sci. Dokl. Math. (2010), toappear.Google Scholar
  71. 71.
    A. Yu. Luzgarev, “Equations defining the highest weight orbit in the adjoint representation,” St. Petersburg Math. J. (2009), toappear.Google Scholar
  72. 72.
    A. Luzgarev, V. Petrov, and N. Vavilov, “Explicit equations on orbit of the highest weight vector” (2009), to appear.Google Scholar
  73. 73.
    H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés,” Ann. Sci. École Norm. Sup. (4), 2, 1–62 (1969).Google Scholar
  74. 74.
    J. S. Milne, “Algebraic groups and arithmetic groups,” http://www.jmilne.org/math/, 1–219 (2006).
  75. 75.
    J. S. Milne, “Semisimple Lie algebras, algebraic groups and tensor categories,” http://www.jmilne.org/math/, 1–37(2007).
  76. 76.
    I. Mirković and K. Vilonen, “Geometric Langlands duality and representations of algebraic groups over commutative rings,” Ann. Math., 165, No. 1, 1–49 (2007).Google Scholar
  77. 77.
    D. W. Morris, “Bounded generation of SL(n, A) (after D. Carter, G. Keller, and E. Paige),” New York J. Math., 13, 383–421 (2007).MATHMathSciNetGoogle Scholar
  78. 78.
    S. Nikolenko and N. Semenov, “Chow ring structure made simple,” arXiv:math.AG/0606335, 1–17 (2006).Google Scholar
  79. 79.
    S. Nikolenko, N. Semenov, and K. Zainoulline, “Motividc decomposition of anisotropic varieties of type F4 into generalised Rost motives,” J. K-Theory, 1–17 (2009), to appear.Google Scholar
  80. 80.
    H. Park and C. Woodburn, “An algorithmic proof of Suslin's stability theorem for polynomial rings,” J. Algebra, 178, No. 1, 277–298 (1995).MATHMathSciNetGoogle Scholar
  81. 81.
    V. A. Petrov and A. K. Stavrova, “Elementary subgroups of isotropic reductive groups,” St. Petersburg Math. J., 20, No. 4, 160–188 (2008).MathSciNetGoogle Scholar
  82. 82.
    V. Petrov and A. Stavrova, “Tits indices over semilocal rings,” J. Algebra, 1–25 (2010), to appear.Google Scholar
  83. 83.
    V. Petrov and A. Stavrova, “Jordan-Kantor pairs and algebraic groups,” J. Algebra (2010), to appear.Google Scholar
  84. 84.
    V. Petrov and A. Stavrova, “Reductive groups as automorphism groups of algebraic structures: a unified approach” (2010), to appear.Google Scholar
  85. 85.
    I. M. Pevzner, “Root elements in exeptional groups,” Ph. D. Thesis. St. Petesburg State University, 1–149 (2008).Google Scholar
  86. 86.
    I. M. Pevzner, “Geometry of root elements in groups of type E6,” Preprint POMI, No. 12, 1–37 (2008).Google Scholar
  87. 87.
    I. M. Pevzner, “The width of groups of type E6 with respect to root elements, I,” Preprint POMI, No. 13, 1–40 (2008).Google Scholar
  88. 88.
    E. B. Plotkin, “Surjective stability of K1-functor for some exceptional Chevalley groups,” J. Soviet Math., 198, 65–88 (1991).MATHMathSciNetGoogle Scholar
  89. 89.
    E. Plotkin, “Stability theorems for K1-functors for Chevalley groups,” in: Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge (1991), pp. 203–217.Google Scholar
  90. 90.
    E. Plotkin, “On the stability of K1-functor for Chevalley groups of type E7,” J. Algebra, 210, 67–85 (1998).MATHMathSciNetGoogle Scholar
  91. 91.
    E. Plotkin, A. Semenov, and N. Vavilov, “Visual basic representations: an atlas,” Internat. J. Algebra Comput., 8, No. 1, 61–95 (1998).MATHMathSciNetGoogle Scholar
  92. 92.
    E. B. Plotkin, M. R. Stein, and N. A. Vavilov, “Stability of K-functors modeled on Chevalley groups, revisited," to appear.Google Scholar
  93. 93.
    A. J. E. Ryba, “Construction of some irreducible subgroups of E8 and E6,” LMS J. Comput. Math., 10, 329–340 (2007).MathSciNetGoogle Scholar
  94. 94.
    A. J. E. Ryba, “Identifation of matrix generators of a Chevalley group,” J. Algebra, 309, 484–496 (2007).MATHMathSciNetGoogle Scholar
  95. 95.
    N. Semenov, “Motivic constrution of cohomological invariants,” 1–30 (2008), to appear.Google Scholar
  96. 96.
    C. S. Seshadri, “Geometry of G/P. I. Standard monomial theory for minuscule representations,” in: C. P. Ramanujam: A Tribute, Tata Press, Bombay (1978), pp. 207–239.Google Scholar
  97. 97.
    A. Sivatsky and A. Stepanov, “On the word length of commutators in GLn(R),” K-theory, 17, 295–302 (1999).MathSciNetGoogle Scholar
  98. 98.
    Y. Shalom, “Bounded generation and Kazhdan property (T),” Inst. Hautes Études Sci. Publ. Math., 90, 145–168 (1999).MATHMathSciNetGoogle Scholar
  99. 99.
    Ch. Soulé, “Chevalley groups over polynomial rings,” in: Homological Group Theory (Durham, 1977), London Math. Soc. Lecture Notes Ser., 36, Cambridge Univ. Press, Cambridge-New York (1979), pp. 359–367.Google Scholar
  100. 100.
    S. Splitthof, “Finite presentability of Steinberg groups and related Chevalley groups,” Contemp. Math., 55, 635–687 (1986).Google Scholar
  101. 101.
    T. A. Springer and F. D. Veldkamp, Octonions, Jordan Algebras and Exceptional Groups, Springer, Berlin (2000).MATHGoogle Scholar
  102. 102.
    A. Stavrova, “Normal struture of maximal parabolic subgroups in Chevalley groups over commutative rings,” Algebra Colloq., 16, No. 4, 631–648 (2009).Google Scholar
  103. 103.
    A. Stavrova, “Struture of isotropic redutive groups,” Ph. D. Thesis, St. Petesburg State University (2009).Google Scholar
  104. 104.
    M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings,” Amer. J. Math., 93, No. 4, 965–1004 (1971).MATHMathSciNetGoogle Scholar
  105. 105.
    M. R. Stein, “The Shur multipliers of \( {\text{S}}{{\text{p}}_6}\left( \mathbb{Z} \right),\,{\text{Spi}}{{\text{n}}_8}\left( \mathbb{Z} \right),\,{\text{Spi}}{{\text{n}}_7}\left( \mathbb{Z} \right) \), and \( {{\text{F}}_4}\left( \mathbb{Z} \right) \),” Math. Ann., 215, 165–172 (1975).MATHMathSciNetGoogle Scholar
  106. 106.
    M. R. Stein, “Stability theorems for K1, K2 and related functors modeled on Chevalley groups,”Japan J. Math., 4, No. 1, 77–108 (1978).MathSciNetGoogle Scholar
  107. 107.
    R. Steinberg, “Générateurs, relations et revêtements des groupes algébriques,” in: Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Gauthier-Villars, Paris (1962), pp. 113–127.Google Scholar
  108. 108.
    R. Steinberg, Lectures on Chevalley Groups, Yale Univ., New Haven (1968).Google Scholar
  109. 109.
    R. Steinberg, “Generators, relations and coverings of algebraic groups. II,” J. Algebra, 71, 527–543 (1981).MATHMathSciNetGoogle Scholar
  110. 110.
    R. Steinberg, “Some consequences of elementary relations of SLn,” Contemp. Math., 45, 335–350 (1985).MathSciNetGoogle Scholar
  111. 111.
    A. Stepanov, “Free product subgroups between Chevalley groups G(Φ, F) and G(Φ, F[t]),” J. Algebra (2010), to appear.Google Scholar
  112. 112.
    A. Stepanov and N. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory, 19, 109–153 (2000).MATHMathSciNetGoogle Scholar
  113. 113.
    A. Stepanov and N. Vavilov, “On the length of commutators in Chevalley groups,” submitted to Israel J. Math. Google Scholar
  114. 114.
    A. A. Suslin, “The struture of the special linear group over polynomial rings,” Izv. Akad. Nauk SSSR Ser. Mat., 11, No. 2, 235–253 (1977).MathSciNetGoogle Scholar
  115. 115.
    A. A. Suslin and V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings,” J. Sov. Math., 20, No. 6, 2665–2691 (1982).MATHGoogle Scholar
  116. 116.
    K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings,” J. Algebra, 175, No. 3, 526–536 (1995).MATHMathSciNetGoogle Scholar
  117. 117.
    G. Taddei, “Shémas de Chevalley-Demazure, fonctions représentatives et théoréme de normalité,” Thèse, Univ. de Genève, 1–58 (1985).Google Scholar
  118. 118.
    G. Taddei, “Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau,” Contemp. Math., 55, 693–710 (1986).MathSciNetGoogle Scholar
  119. 119.
    O. I. Tavgen, “Finite width of arithmetic subgroups of Chevalley groups of rank ≥ 2,” Soviet Math. Dokl., 41, No. 1, 136–140 (1990).MATHMathSciNetGoogle Scholar
  120. 120.
    O. I. Tavgen, “Bounded generation of Chevalley groups over rings of S-integer algebraic numbers,” Izv. Akad. Nauk SSSR Ser. Mat., 54, No. 1, 97–122 (1990).MATHGoogle Scholar
  121. 121.
    O. I. Tavgen, “Bounded generation of normal and twisted Chevalley groups over the rings of S-integers,” Contemp. Math., 131, No. 1, 409–421 (1992).MathSciNetGoogle Scholar
  122. 122.
    D. M. Testerman, “A construction of certain maximal subgroups of the algebraic groups E6 and F4,” Comm. Algebra, 17, No. 4, 1003–1016 (1989).MATHMathSciNetGoogle Scholar
  123. 123.
    M. S. Tulenbaev, “Schur multiplier of the group of elementary matrices of finite order,” J. Sov. Math., 17, No. 4 (1981).Google Scholar
  124. 124.
    L. N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 36, No. 5, 219–230 (1986).MathSciNetGoogle Scholar
  125. 125.
    N. Vavilov, “Struture of Chevalley groups over commutative rings,” in: Nonassoiative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge (1991), pp. 219–335.Google Scholar
  126. 126.
    N. Vavilov, “A third look at weight diagrams,” Rend. Sem. Mat. Univ. Padova, 204, 1–45 (2000).MathSciNetGoogle Scholar
  127. 127.
    N. A. Vavilov, “Do it yourself structure constants for Lie algebras of type El,” J. Math. Sci., 120, 1513–1548 (2004).MathSciNetGoogle Scholar
  128. 128.
    N. A. Vavilov, “Can one see the signs of the structure constants?,” St. Petersburg Math. J., 19, No. 4, 34–68 (2007).MathSciNetGoogle Scholar
  129. 129.
    N. A. Vavilov, “Calculations in exceptional groups,” Vestnik Samara Univ. Natural Sciences, No. 7, 11–24 (2007).Google Scholar
  130. 130.
    N. Vavilov, “An A3-proof of structure theorems for Chevalley groups of types E6 and E7,” Internat J. Algebra Comput.,17, No. 5–6, 1283–1298 (2007).MATHMathSciNetGoogle Scholar
  131. 131.
    N. A. Vavilov, “Numerology of square equations,” St. Petersburg Math. J., 20, No. 4, 9–40 (2008).Google Scholar
  132. 132.
    N. A. Vavilov, “An A3-proof of structure theorems for Chevalley groups of types E6 and E7. II. The principal lemma,” St. Petersburg Math. J. (2010), to appear.Google Scholar
  133. 133.
    N. A. Vavilov and M. R. Gavrilovich, “An A2-proof of the structure theorems for Chevalley groups of types E6 and E7,” St. Petersburg Math. J., 16, No. 4, 649–672 (2005).MathSciNetGoogle Scholar
  134. 134.
    N. A. Vavilov, M. R. Gavrilovich, and S. I. Nikolenko, “Structure of Chevalley groups: the Proof from the Book,” J. Math. Sci., 330, 36–76 (2006).MATHMathSciNetGoogle Scholar
  135. 135.
    N. A. Vavilov and V. G. Kazakevich, “Yet another variation of decomposition on transvections,” Vestnik St. Petersburg Univ. Math., 41, No. 4, 345–347 (2008).MATHMathSciNetGoogle Scholar
  136. 136.
    N. A. Vavilov and A. Yu. Luzgarev, “Normaliser of Chevalley groups of type E6,” St. Petersburg Math. J., 19, No. 5, 35–62 (2007).MathSciNetGoogle Scholar
  137. 137.
    N. A. Vavilov and A. Yu. Luzgarev, “Normaliser of Chevalley groups of type E7,” St. Petersburg Math. J. (2010), to appear.Google Scholar
  138. 138.
    N. A. Vavilov and A. Yu. Luzgarev, “Chevalley group of type E7 in the 56-dimensional representation,” J. Math. Sci. (2010), to appear.Google Scholar
  139. 139.
    N. A. Vavilov and A. Yu. Luzgarev, “An A2-proof of the structure theorems for Chevalley groups of type E8,” St. Petersburg Math. J. (2010), to appear.Google Scholar
  140. 140.
    N. A. Vavilov, A. Yu. Luzgarev, and I. M. Pevzner, “Chevalley group of type E6 in the 27-dimensional representation,” J. Math. Sci., 338, 5–68 (2006).MATHMathSciNetGoogle Scholar
  141. 141.
    N. A. Vavilov and S. I. Nikolenko, “An A2-proof of the structure theorems for Chevalley groups of type F4,” St. Petersburg Math. J., 20, No. 4, 27–63 (2008).MathSciNetGoogle Scholar
  142. 142.
    N. Vavilov and E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations,” Acta Appl. Math., 45, No. 1, 73–113 (1996).MATHMathSciNetGoogle Scholar
  143. 143.
    N. A. Vavilov, E. B. Plotkin, and A. V. Stepanov, “Calculations in Chevalley groups over commutative rings,” Soviet Math. Dokl., 40, No. 1, 145–147 (1990).MathSciNetGoogle Scholar
  144. 144.
    N. A. Vavilov and A. K. Stavrova, “Basic reductions in the description of normal subgroups,” J. Math. Sci., 151, No. 3, 2949–2960 (2008).Google Scholar
  145. 145.
    N. A. Vavilov and A. V. Stepanov, “Over groups of semisimple subgroups,” Vestnik Samara Univ. Natural Sciences, No. 3(62), 51–94 (2008).Google Scholar
  146. 146.
    W. C. Waterhouse, Introduction to Affine Group Schemes, Springer-Verlag ,New York-Berlin (1979).MATHGoogle Scholar
  147. 147.
    N. J. Wildberger, “A combinatorial construction for simply-laced Lie algebras,” Adv. in Appl. Math., 30, 385–396 (2003).MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Abdus Salam School of Mathematical Sciences at the GCULahorePakistan

Personalised recommendations