Journal of Mathematical Sciences

, Volume 165, Issue 6, pp 654–688 | Cite as

On constrained impulsive control problems

  • A. V. ArutyunovEmail author
  • D. Yu. Karamzin
  • F. L. Pereira


This paper considers constrained impulsive control problems for which the authors propose a new mathematical concept of control required for the impulsive framework. These controls can arise in engineering, in particular, in problems of space navigation. We derive necessary extremum conditions in the form of the Pontryagin maximum principle and also study conditions under which the constraint regularity clarifications become weaker. In the proof of the main result, Ekeland’s variational principle is used.


Radon Optimal Control Problem Multivalued Mapping Impulsive Control Pontryagin Maximum Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control [in Russian], Nauka, Moscow (1983).Google Scholar
  2. 2.
    A. V. Arutyunov, Optimality Conditions: Abnormal and Degenerate Problems, Kluwer Academic Publisher (2000).Google Scholar
  3. 3.
    A. V. Arutyunov, “Some properties of quadratic mappings,” Vestn. MGU, Vychisl. Mat. Kibern., 2, 30–32 (1999).Google Scholar
  4. 4.
    A. V. Arutyunov and D. Yu. Karamzin, “Necessary conditions of the minimum in an impulse optimal control problem,” In: Nonlinear Dynamics and Control [in Russian], 4, Fizmatlit, Moscow (2004), pp. 205–240.Google Scholar
  5. 5.
    A. V. Arutyunov, D. Yu. Karamzin, and F. L. Pereira, “A nondegenerate maximum principle for the impulse control problem with state constraints,” SIAM J. Control Optim., 43, No. 5, 1812–1843 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. V. Arutyunov, D. Yu. Karamzin, and F. L. Pereira, “Maximum principle in problems with mixed constraints under weak assumptions of regularity,” In: Theoretical and Applied Problems of Nonlinear Analysis [in Russian], Computational Center of Russian Academy of Sciences (2008), pp. 1–33.Google Scholar
  7. 7.
    A. V. Arutyunov, D. Yu. Karamzin, and F. L. Pereira, “Necessary optimality conditions for problems with equality and inequality constraints: The abnormal case,” J. Optim. Theory Appl., 1 (2009) (in press).Google Scholar
  8. 8.
    J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York (2000).zbMATHGoogle Scholar
  9. 9.
    A. Bressan and F. Rampazzo, “Impulsive control systems with commutative vector fields,” J. Optim. Theory Appl., 71, 67–83 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York (1983).zbMATHGoogle Scholar
  11. 11.
    V. A. Dykhta and O. N. Samsonyuk, Optimal Impulse Control with Applications [in Russian], Fizmatlit, Moscow (2000).Google Scholar
  12. 12.
    I. Ekeland, “On the variational principle,” J. Math. Anal. Appl., 47, 324–353 (1974).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    M. W. Hirsch, Differential Topology, Springer, New York (1976).zbMATHGoogle Scholar
  14. 14.
    A. D. Ioffe and V. M. Tikhomirov, “Several remarks on variational principles,” Mat. Zametki, 61, No. 2, 305–311 (1997).MathSciNetGoogle Scholar
  15. 15.
    A. A. Kirillov and A. D. Gvishiani, Theorems and Problems of Functional Analysis [in Russian], Nauka, Moscow (1979).zbMATHGoogle Scholar
  16. 16.
    A. B. Kurzhanskii, Optimal Systems with Impulse Controls, Differential Games and Control Problems [in Russian], Preprint, UNTs, Akad. Nauk SSSR, Sverdlovsk, 131–156 (1975).Google Scholar
  17. 17.
    B. M. Miller, “Optimality conditions in the problems of generalized optimization, I (necessary conditions)”, Automat. Remote Control, 53, No. 3, 50–58 (1992).MathSciNetGoogle Scholar
  18. 18.
    A. A. Milyutin, Maximum Principle in a General Optimal Control Problem [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  19. 19.
    B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Springer (2005).Google Scholar
  20. 20.
    B. S. Mordukhovich, “Maximum principle in problems of time optimal control with nonsmooth constraints,” Appl. Math. Mech., 40, 960–969 (1976).zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    M. D. R. de Pinho and R. V. Vinter, “Necessary conditions for optimal control problems involving nonlinear differential algebraic equations,” J. Math. Anal. Appl., 212, 493–516 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1983).zbMATHGoogle Scholar
  23. 23.
    R. W. Rishel, “An extended Pontryagin principle for control systems whose control laws contain measures,” J. SIAM. Ser. A. Control, 3, No. 2, 191–205 (1965).zbMATHMathSciNetGoogle Scholar
  24. 24.
    R. Rockafellar, Convex Analysis, Princeton University Press (1970).Google Scholar
  25. 25.
    R. B. Vinter and F. L. Pereira, “A maximum principle for optimal processes with discontinuous trajectories,” SIAM J. Control Optim., 26, 205–229 (1988).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • A. V. Arutyunov
    • 1
    Email author
  • D. Yu. Karamzin
    • 2
  • F. L. Pereira
    • 3
  1. 1.Russian University of People’s FriendshipMoscowRussia
  2. 2.Computational Center of the Russian Academy of SciencesMoscowRussia
  3. 3.University of PortoFEUPPortoPortugal

Personalised recommendations