Journal of Mathematical Sciences

, Volume 165, Issue 4, pp 473–482 | Cite as

On compact perturbations of finite-zone Jacobi operators

  • A. A. KononovaEmail author

For a bounded Jacobi operator (a discrete analog of the Sturm–Liouville operator on the half-axis), the compactness of a perturbation is studied. The perturbation is produced by a change of the spectral measure (the essential spectrum remains unchanged). Bibliography: 21 titles.


State Technical Complex Plane Spectral Measure Essential Spectrum Contour Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Aptekarev, “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Todahains,” Mat. Sb., 125(167), 231–258 (1984).MathSciNetGoogle Scholar
  2. 2.
    N. I. Akhiezer, The Classical Moments Problem, Hafner, New York (1965).Google Scholar
  3. 3.
    N. I. Akhiezer, “Orthogonal polynomials on several intervals,” Dokl. Akad. Nauk SSSR, 1, 989–992 (1960).zbMATHGoogle Scholar
  4. 4.
    B. A. Dubrovin, “Theta functions and nonlinear equations,” Usp. Mat. Nauk, 36, 11–92 (1981).MathSciNetGoogle Scholar
  5. 5.
    V. A. Kalyagin and A. A. Kononova, “On asymptotics of polynomials that are orthogonal with respect to a measure with atoms on a system of arcs,” Algebra Analiz, 21, 71–91 (2009).MathSciNetGoogle Scholar
  6. 6.
    V. A. Kalyagin and A. A. Kononova, “On compact perturbations of limit-periodic Jacobi operator,” Mat. Zametki, 86, 845–858 (2009).Google Scholar
  7. 7.
    E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Amer. Math. Soc., Providene, RI (1991).zbMATHGoogle Scholar
  8. 8.
    E. A. Rakhmanov, “On asymptotics of the ratio of orthogonal polynomials,” Mat. Sb.,32, 199–213 (1977).zbMATHCrossRefGoogle Scholar
  9. 9.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press, New York (1978).zbMATHGoogle Scholar
  10. 10.
    Yu. Ya. Tomhuk, “Orthogonal polynomials over a system of intervals on the real line,” Zap. Fiz.-Mat. Fak. Kharkov. Mat. Obst., (4)29, 93–128 (1963).Google Scholar
  11. 11.
    N. G. Chebotarev, Theory of Algebraic Functions [in Russian], Moscow (1948).Google Scholar
  12. 12.
    A. I. Aptekarev, V. Kaliaguine, and W. Van Assche, “Criterion for the resolvent set of nonsymmetric tridiagonal operators,” Proc. Amer. Math. Soc., 123, 2423–2430 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    B. Beckermann, “Complex Jacobi matrices,” J. Comput. Appl. Math., 127, 17–65 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    B. Beckermann, V. A. Kaliaguine, and A. A. Kononova, “Mass points and compact perturbation of a finite zone Jacobi operator,” preprint.Google Scholar
  15. 15.
    D. Damanik, R. Killip, and B. Simon, “Perturbations of orthogonal polynomials with periodic recursion coeffients,” preprint (
  16. 16.
    S. Denisov, “On Rakhmanov’s theorem for Jacobi matrices,” Proc. Amer. Matt. Soc., 132, 847–852 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    S. Denisov and B. Simon, “Zeros of orthogonal polynomials on the real line,” J. Approx. Theory, 121, 357–364 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin (1966)zbMATHGoogle Scholar
  19. 19.
    F. Peherstorfer and P. Yuditskii, “Asymptotic behavior of polynomials orthonormal on a homogeneous set,” J. d’Analyse Mathematique, 89:1, 113–154 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    C. Remling, “The absolutely continuous spectrum of Jacobi matrices,” preprint (arXiv:0706.1101).Google Scholar
  21. 21.
    H. Widom, “Extremal polynomials associated with a system of curves and arcs in the complex plane,” Adv. Matt.,3, 127–232 (1969).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia

Personalised recommendations