Journal of Mathematical Sciences

, Volume 171, Issue 6, pp 736–744 | Cite as

A generalization of the Bombieri–Pila determinant method


The so-called determinant method was developed by Bombieri and Pila in 1989 for counting integral points of bounded height on affine plane curves. In this paper, we give a generalization of that method to varieties of higher dimension, yielding a proof of Heath-Brown’s “Theorem 14” by real-analytic considerations alone. Bibliography: 11 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bohnak, M. Coste,and M.-F. Roy, Géométrie Algébrique Réelle, Springer-Verlag, Berlin (1987).Google Scholar
  2. 2.
    E. Bombieri and J. Pila, “The number of integral points on arcs and ovals,” Duke Math. J., 59, No. 2, 337–357 (1989).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    N. Broberg, “A note on a paper by R. Heath-Brown: ‘The density of rational points on curves and surfaces’,” J. reine angew. Math., 571, 159–178 (2004).MATHMathSciNetGoogle Scholar
  4. 4.
    D. Burguet, “A proof of Yomdin-Gromov’s algebraic lemma,” Israel J. Math., 168, 291–316 (2008).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, New York (1992).MATHGoogle Scholar
  6. 6.
    M. Gromov, “Entropy, homology, and semi-algebraic geometry,” Astérisque, 145–146, No. 5, 225–240 (1987).MathSciNetGoogle Scholar
  7. 7.
    D. R. Heath-Brown, “The density of rational points on curves and surfaces,” Ann. Math. (2), 155, No. 2, 553–595 (2002).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Pila and A. J. Wilkie, “The rational points of a definable set,” Duke Math. J., 133, No. 3, 591–616 (2006).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Pila, “Integer points on the dilation of a subanalytic surface,” Q. J. Math., 55, No. 2, 207–223 (2004).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Salberger, “On the density of rational and integral points on algebraic varieties,” J. reine angew. Math., 606, 123–147 (2007).MATHMathSciNetGoogle Scholar
  11. 11.
    Y. Yomdin, “C k-resolution of semi-algebraic mappings. Addendum to: ‘Volume growth and entropy’,” Israel J. Math., 57, No. 3, 301–317 (1987).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Chalmers University of Technology & University of GothenburgGothenburgSweden

Personalised recommendations