Journal of Mathematical Sciences

, Volume 171, Issue 3, pp 317–321 | Cite as

Some more exceptional numerology

Article

The paper deals with some additional details concerning the parametrization of the highest Weyl orbit of equations on the highest weight orbit in the adjoint representations of Chevalley groups of types E7 and E8, as given in the author’s paper “Numerology of square equations.” Bibliography: 25 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Abe, “Automorphisms of Chevalley groups over commutative rings,” Algebra Analiz, 5, No. 2, 74–90 (1993).Google Scholar
  2. 2.
    E. I. Bunina, “Automorphisms of Chevalley groups of types Al, Dl, and El over local rings with 1/2,” Fundam. Prikl. Mat., 15, No. 2, 35–59 (2007).Google Scholar
  3. 3.
    E. I. Bunina, “Automorphisms of elementary adjoint Chevalley groups of types Al, Dl, and El over local rings with 1/2,” Algebra Logika, 48, No. 4, 443–470 (2007).MathSciNetGoogle Scholar
  4. 4.
    N. Bourbaki, Lie Groups and Algebras [Russian translation], Chaps. IV–VI, Mir, Mosow (1972).Google Scholar
  5. 5.
    N. Bourbaki, Lie Groups and Algebras [Russian translation], Chaps. VII, VIII, Mir, Mosow (1978).Google Scholar
  6. 6.
    N. A. Vavilov, “How to see the signs of struture on stants,” Algebra Analiz, 19, No. 4, 34–68 (2007).MathSciNetGoogle Scholar
  7. 7.
    N. A. Vavilov, “Numerology of square equations,” Algebra Analiz, 20 (2008).Google Scholar
  8. 8.
    N. A. Vavilov and A. Yu. Luzgarev, “Normalizer of the Chevalley group of type E6,” Algebra Analiz, 19, No. 5, 35–62 (2007).MathSciNetGoogle Scholar
  9. 9.
    N. A. Vavilov, A. Yu. Luzgarev, and I. M. Pevzner, “The Chevalley group of type E6 in the 27-dimensional representation,” Zap. Nauhn. Semin. POMI, 338, 5–68 (2006).MATHGoogle Scholar
  10. 10.
    N. A. Vavilov and N. P. Kharhev, “Orbits of the stabilizer of subsystems,” Zap. Nauhn. Semin. POMI, 338, 98–1248 (2006).MATHGoogle Scholar
  11. 11.
    R. Carter, “Conjugacy classes in the Weyl group,” in: Seminar on Algebraic Groups, Mir, Moscow (1973), pp. 288–306.Google Scholar
  12. 12.
    A. Yu. Luzgarev, “Equations defining the highest weight orbit in the adjoint representation” (to appear).Google Scholar
  13. 13.
    Yu. I. Manin, Cubic Forms: Algebra, Geometry, and Arithmetic [in Russian], Nauka, Mosow (1972).Google Scholar
  14. 14.
    M. Brion and V. Lakshmibai, “A geometric approach to standard monomial theory,” J. Representation Theory, 7, 651–680 (2003).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    R. W. Carter, “Conjugacy classes in the Weyl group,” Compositio Math., 25, No. 1, 1–59 (1972).MATHMathSciNetGoogle Scholar
  16. 16.
    A. M. Cohen and R. H. Cushman, “Gröbner bases and standard monomial theory,” in: Computational Algebraic Geometry, Birkhaauser, Boston et al. (1993) ,pp. 41–60.Google Scholar
  17. 17.
    N. Goniulea and V. Lakshmibai, “Gröbner bases and standard monomial bases,” (2001), 1–8.Google Scholar
  18. 18.
    A. Harebov and N. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus,” Comm. Algebra, 24, No. 1, 1096–133 (1996).CrossRefMathSciNetGoogle Scholar
  19. 19.
    V. Lakshmibai, P. Littelmann, and P. Magyar, “Standard monomial theory and appliations,” in: Representation Theory and Geometry, Kluwer Acad. Publ., Dordrecht et al. (1998), pp. 319–364.Google Scholar
  20. 20.
    V. Lakshmibai, and C. S. Seshadri, “Standard monomial theory,” in: Hyderabad Conference on Algebraic Groups, Madras, Manoj Prakashan (1991), pp. 279–323.Google Scholar
  21. 21.
    A. Luzgarev, V. Petrov, and N. Vavilov, “Explicit equations on the orbit of the highest weight vetor” (to appear).Google Scholar
  22. 22.
    E. Plotkin, A. Semenov, and N. Vavilov, “Visual basic representations: an atlas,” Internat. J. Algebra Comput., 8, No. 1, 61–95 (1998).MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    C. S. Seshadri, “Geometry of G/P. I. Standard monomial theory for minuscule P,” in: C. P. Ramanujan: a Tribute, Tata Press, Bombay (1978), pp. 207–239.Google Scholar
  24. 24.
    N. Vavilov, “A third look at weight diagrams,” Rendiconti del Rend. Sem. Mat. Univ. Padova, 204, No. 1, 201–250 (2000).MathSciNetGoogle Scholar
  25. 25.
    N. A. Vavilov, “Do it yourself struture constants for Lie algebras of type El,” Zap. Nauhn. Semin. POMI, 281, 60–104(2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations