Journal of Mathematical Sciences

, Volume 170, Issue 2, pp 238–250 | Cite as

On the Poincaré isomorphism in K-theory on manifolds with edges

  • V. E. Nazaikinskii
  • A. Yu. Savin
  • B. Yu. Sternin


In this paper, the Poincaré isomorphism in K-theory on manifolds with edges is constructed. It is shown that the Poincaré isomorphism can be naturally constructed in terms of noncommutative geometry. More precisely, we obtain a correspondence between a manifold with edges and a noncommutative algebra and establish an isomorphism between the K-group of this algebra and the K-homology group of the manifold with edges, which is considered as a compact topological space.


Manifold Vector Bundle Dirac Operator Elliptic Operator Toeplitz Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. F. Atiyah, “Global theory of elliptic operators,” in: Proc. Int. Symp. Funct. Anal., Univ. of Tokyo Press, Tokyo (1969), pp. 21–30.Google Scholar
  2. 2.
    M. F. Atiyah and R. Bott, “The index problem for manifolds with boundary,” in: Bombay Colloq. Differ. Anal., Oxford Univ. Press, Oxford (1964), pp. 175–186.Google Scholar
  3. 3.
    M. Atiyah, V. Patodi, and I. Singer, “Spectral asymmetry and Riemannian geometry, I,” Math. Proc. Cambridge Philos. Soc., 77, 43–69 (1975).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Atiyah, V. Patodi, and I. Singer, “Spectral asymmetry and Riemannian geometry, III,” Math. Proc. Cambridge Philos. Soc., 79, 71–99 (1976).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    P. Baum and R. G. Douglas, “K-homology and index theory,” in: Operator Algebras Appl., Proc. Symp. Pure Math., 38, Part 1, (1982), pp. 117–173.Google Scholar
  6. 6.
    P. Baum and R. G. Douglas, “Index theory, bordism, and K-homology,” Contemp. Math. 10, 1–31 (1982).zbMATHMathSciNetGoogle Scholar
  7. 7.
    J.-M. Bismut and J. Cheeger, “η-Invariants and their adiabatic limits,” J. Amer. Math. Soc., 2, No. 1, 33–70 (1989).zbMATHMathSciNetGoogle Scholar
  8. 8.
    P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, CRC Press, Boca Raton (1995).zbMATHGoogle Scholar
  9. 9.
    N. Higson and J. Roe, Analytic K-Homology, Oxford Univ. Press, Oxford (2000).zbMATHGoogle Scholar
  10. 10.
    L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, Springer-Verlag, Berlin (2007)zbMATHGoogle Scholar
  11. 11.
    J. Kaminker, “Pseudo-differential operators and differentiable structures,” in: Operator Algebras and K-Theory, Amer. Math. Soc., Providence, Rhode Island (1982), pp. 99–128.Google Scholar
  12. 12.
    G. G Kasparov, “Operator K-theory and applications,” in: Itogi Nauki Tekhn. Ser. Sovr. Probl. Mat. Noveishie Resul’taty, 27, VINITI, Moscow (1985), pp. 3–21.Google Scholar
  13. 13.
    G. Luke, “Pseudodifferential operators on Hilbert bundles,” J. Differ. Equ., 12, 566–589 (1972).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    R. Melrose and P. Piazza, “Analytic K-theory on manifolds with corners,” Adv. Math., 92, No. 1, 1–26 (1992).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    R. Melrose and P. Piazza, “Families of Dirac operators, boundaries, and the b-calculus,” J. Differ. Geom., 46, No. 1, 99–180 (1997).zbMATHMathSciNetGoogle Scholar
  16. 16.
    V. E. Nazaikinskii, A. Yu. Savin, and B. Yu. Sternin, “On a homotopic classification of elliptic operators on sratified manifolds,” Izv. Ross. Akad. Nauk Ser. Mat., 71, No. 6, 91–118 (2007).MathSciNetGoogle Scholar
  17. 17.
    A. Savin and B. Sternin, “Boundary-value problems on manifolds with fibered boundary,” Math. Nachr., 278, No. 11, 1297–1317 (2005).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • V. E. Nazaikinskii
    • 1
  • A. Yu. Savin
    • 2
  • B. Yu. Sternin
    • 2
  1. 1.Institute for Problems in MechanicsRussian Academy of ScienceMoscowRussia
  2. 2.Independent University of MoscowMoscowRussia

Personalised recommendations