PI-groups and PI-representations of groups

  • E. AladovaEmail author
  • B. Plotkin

It is well known that many famous Burnside-type problems have positive solutions for PI-groups and PI-algebras. In the present article, we also consider various Burnside-type problems for PI-groups and PI-representations of groups.


Nilpotent Group Invertible Element Faithful Representation Unipotent Radical Nilpotent Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. S. Golod and I. R. Shafarevich, “On the class field tower,” Izv. Akad. Nauk SSSR, Ser. Mat., 28, 261–272 (1964).zbMATHMathSciNetGoogle Scholar
  2. 2.
    K. A. Hirsch, “Über lokal-nilpotente Gruppen,” Math. Z., 63, 290–294 (1955).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    N. Jacobson, Structure of Rings, Amer. Math. Soc., Providence (1964).Google Scholar
  4. 4.
    L. Kaloujnine, “Über gewisse Beziehungen zwischen einer Gruppe und ihren Automorphismen,” Berliner Math. Tagung, 164–172 (1953).Google Scholar
  5. 5.
    E. R. Kolchin, “On certain concepts in the theory of algebraic matrix groups,” Ann. Math., 49, 774–789 (1948).CrossRefMathSciNetGoogle Scholar
  6. 6.
    P. S. Novikov and S. I. Adian, “On infinite periodic groups. I, II, III,” Izv. Akad. Nauk SSSR, Ser. Mat. 32, 212–244, 251–524, 709–731 (1968).MathSciNetGoogle Scholar
  7. 7.
    S. A. Pikhtilkov, “On the prime radical of PI-representable groups,” Math. Notes, 72, No. 5–6, 682–686 (2002).CrossRefMathSciNetGoogle Scholar
  8. 8.
    V. P. Platonov, “Engel elements and the radical in PI-algebras and topological groups,” Sov. Math. Dokl., 6, 412–415 (1965).zbMATHGoogle Scholar
  9. 9.
    B. I. Plotkin, “On some criteria of locally nilpotent groups,” Am. Math. Soc. Transl., 17, 1–7 (1961).MathSciNetGoogle Scholar
  10. 10.
    B. I. Plotkin, Group of Automorphisms of Algebraic System, Wolters-Noordhoff, Groningen (1972).Google Scholar
  11. 11.
    B. I. Plotkin, “Notes on Engel groups and Engel elements in groups. Some generalizations,” Izv. Ural. Gos. Univ. Mat. Mekh., 36, No. 7, 153–166, 192–193 (2005).MathSciNetGoogle Scholar
  12. 12.
    B. I. Plotkin and S. M. Vovsi, Varieties of Group Representations. General Theory, Connections, and Applications [in Russian], Zinatne, Riga (1983).Google Scholar
  13. 13.
    C. Procesi, “The Burnside problem,” J. Algebra, 4, 421–425 (1966).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    J. Tits, “Free subgroups in linear groups,” J. Algebra, 20, 250–270 (1972).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Tokarenko, “On linear groups over rings,” Sib. Mat. Zh., 9, No. 4, 951–959 (1968).MathSciNetGoogle Scholar
  16. 16.
    O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Univ. Ser. Higher Math., Van Nostrand, Princeton (1958).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Department of MathematicsBar-Ilan UniversityRamat GanIsrael
  2. 2.Department of MathematicsHebrew University of JerusalemJerusalemIsrael

Personalised recommendations