On the self-intersection of a movable linear system

  • A. V. PukhlikovEmail author


In this paper, a complete proof of the so-called 8n 2-inequality is given, a local inequality for the self-intersection of a movable linear system at an isolated center of a noncanonical singularity.


Complete Intersection Fano Variety Birational Geometry Exceptional Line Connectedness Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    I. Cheltsov, “Non-rationality of a four-dimensional smooth complete intersection of a quadric and a quartic, not containing a plane,” Sb. Math., 194, 1679–1699 (2003).CrossRefMathSciNetGoogle Scholar
  2. 2.
    I. Cheltsov, “Double cubics and double quartics,” Math. Z., 253, No. 1, 75–86 (2006); arXiv:math/0410408v4.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    I. A. Cheltsov, “Birationally rigid Fano varieties,” Russ. Math. Surv., 60, No. 5, 875–965 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Corti, “Singularities of linear systems and 3-fold birational geometry,” in: Explicit Birational Geometry of Threefolds, London Math. Soc. Lect. Note Ser., Vol. 281, Cambridge Univ. Press, Cambridge (2000), pp. 259–312.Google Scholar
  5. 5.
    V. A. Iskovskikh, “Birational rigidity of Fano hypersurfaces in the framework of Mori theory,” Russ. Math. Surv., 56, No. 2, 207–291 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    V. A. Iskovskikh and Yu. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem,” Math. USSR Sb., 86, No. 1, 140–166 (1971).Google Scholar
  7. 7.
    V. A. Iskovskikh and A. V. Pukhlikov, “Birational automorphisms of multi-dimensional algebraic varieties,” J. Math. Sci., 82, 3528–3613 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Kollár, ed., Flips and Abundance for Algebraic Threefolds. A Summer Seminar at the University of Utah, Salt Lake City, 1991, Astérisque, 211, Soc. Math. de France, Paris (1992).Google Scholar
  9. 9.
    A. V. Pukhlikov, “Birational isomorphisms of four-dimensional quintics,” Invent. Math., 87, 303–329 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. V. Pukhlikov, “Birational automorphisms of a double space and a double quadric,” Math. USSR Izv., 32, 233–243 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. V. Pukhlikov, “Birational automorphisms of a three-dimensional quartic with an elementary singularity,” Math. USSR Sb., 63, 457–482 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces,” Invent. Math., 134, No. 2, 401–426 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    A. V. Pukhlikov, “Birationally rigid Fano double hypersurfaces,” Sb. Math., 191, No. 6, 101–126 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A. V. Pukhlikov, “Birationally rigid Fano complete intersections,” J. Reine Angew. Math., 541, 55–79 (2001).zbMATHMathSciNetGoogle Scholar
  15. 15.
    A. V. Pukhlikov, “Birationally rigid iterated Fano double covers,” Izv. Math., 67, No. 3, 555–596 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. V. Pukhlikov, “Birational geometry of Fano direct products,” Izv. Math., 69, No. 6, 1225–1255 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. V. Pukhlikov, Birational geometry of algebraic varieties with a pencil of Fano cyclic covers, Preprint No. 66, Max-Planck-Institut für Mathematik (2006).Google Scholar
  18. 18.
    A. V. Pukhlikov, “Birationally rigid varieties. I. Fano varieties,” Russ. Math. Surv., 62, No. 5, 857–942 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    V. V. Shokurov, “3-fold log flips,” Izv. Math., 40, 93–202 (1993).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations