On congruences of groupoids closely connected with quasigroups

  • V. A. ShcherbacovEmail author
  • A. Kh. Tabarov
  • D. I. Puşcaşu


Conditions when a congruence of a left (right) division groupoid and a left (right) cancellation groupoid is closed (“normal”) are given. Conditions for the simplicity of the above-mentioned groupoids are obtained.


Binary Relation Binary Operation Homomorphic Image Universal Algebra Prodan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. E. Bates and F. Kiokemeister, “A note on homomorphic mappings of quasigroups into multiplicative systems,” Bull. Am. Math. Soc., 54, 1180–1185 (1948).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    V. D. Belousov, Foundations of the Theory of Quasigroups and Loops [in Russian], Nauka, Moscow (1967).Google Scholar
  3. 3.
    V. D. Belousov. “The group associated with a quasigroup,” Mat. Issled., 4, No. 3, 21–39 (1969).zbMATHMathSciNetGoogle Scholar
  4. 4.
    V. D. Belousov, n-Ary Quasigroups [in Russian], Shtiintsa, Kishinev (1971).Google Scholar
  5. 5.
    V. D. Belousov, Elements of Quasigroup Theory: A Special Course [in Russian], Izd. Kishinev. Gos. Univ., Kishinev (1981).Google Scholar
  6. 6.
    G. Birkhoff, Lattice Theory [Russian translation], Nauka, Moscow (1984).Google Scholar
  7. 7.
    R. H. Bruck, A Survey of Binary Systems, Springer, New York (1971).Google Scholar
  8. 8.
    S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer, Berlin (1981).zbMATHGoogle Scholar
  9. 9.
    P. M. Cohn, Universal Algebra, Harper & Row, New York (1965).zbMATHGoogle Scholar
  10. 10.
    W. Dörnte, “Untersuchungen über einen veralgemeinerten Gruppenbegriff,” Math. Z., 29, 1–19 (1928).zbMATHCrossRefGoogle Scholar
  11. 11.
    J. Duplak, “A parastrophic equivalence in quasigroups,” Quasigroups Relat. Syst., 7, 7–14 (2000).zbMATHMathSciNetGoogle Scholar
  12. 12.
    T. Evans, “Homomorphisms of non-associative systems,” J. London Math. Soc., 24, 254–260 (1949).CrossRefMathSciNetGoogle Scholar
  13. 13.
    T. Evans, “On multiplicative systems defined by generators and relations,” Math. Proc. Cambridge Philos. Soc., 47, 637–649 (1951).zbMATHCrossRefGoogle Scholar
  14. 14.
    J. B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, London (1982).Google Scholar
  15. 15.
    T. Ihringer. “On multiplication groups of quasigroups,” Eur. J. Combin., 5, No. 2, 137–141 (1984).zbMATHMathSciNetGoogle Scholar
  16. 16.
    J. Ježek and T. Kepka, Medial Groupoids, Rozpr. Cesl. Akad. Ved, Vol. 93, No. 2, Academia, Praha (1983).Google Scholar
  17. 17.
    J. Ježek, T. Kepka, and P. Nemec. Distributive Groupoids, Rozpr. Cesl. Akad. Ved, Vol. 91, No. 3, Academia, Praha (1981).Google Scholar
  18. 18.
    M. I. Kargapolov and M. Yu. Merzlyakov, Foundations of Group Theory, Nauka, Moscow (1977).zbMATHGoogle Scholar
  19. 19.
    A. D. Keedwell and V. A. Shcherbacov, “Quasigroups with an inverse property and generalized parastrophic identities,” Quasigroups Related Systems, 13, 109–124 (2005).zbMATHMathSciNetGoogle Scholar
  20. 20.
    S.-M. Lee, “On finite-element simple extensions of a countable collection of countable groupoids,” Publ. Inst. Math., Nouv. Sér., 38, 65–68 (1985).Google Scholar
  21. 21.
    A. I. Mal’tsev, “Identical relations on varieties of quasigroups,” Mat. Sb., 69, No. 1, 3–12 (1966).MathSciNetGoogle Scholar
  22. 22.
    A. I. Mal’tsev, Algebraic Systems [in Russian], Nauka, Moscow (1976).zbMATHGoogle Scholar
  23. 23.
    R. Moufang, “Zur Struktur von Alternativkörpern,” Math. Ann., 110, 416–430 (1935).CrossRefMathSciNetGoogle Scholar
  24. 24.
    G. L. Mullen and V. A. Shcherbacov, “On orthogonality of binary operations and squares,” Bul. Acad. S¸ti. Rep. Moldova, Mat., No. 2, 3–42 (2005).Google Scholar
  25. 25.
    H. O. Pflugfelder, Quasigroups and Loops: Introduction, Heldermann, Berlin (1990).Google Scholar
  26. 26.
    L. V. Sabinin, Smooth Quasigroups and Loops, Math. Appl., Vol. 492, Kluwer Academic, Dordrecht (1999).Google Scholar
  27. 27.
    V. A. Shcherbacov, On Automorphism Groups and Congruences of Quasigroups [in Russian], Ph.D. Thesis, IM AN MSSR (1991).Google Scholar
  28. 28.
    V. A. Shcherbacov, “On Bruck–Belousov problem,” Bul. Acad. Şti. Rep. Moldova, Mat., No. 3, 123–140 (2005).Google Scholar
  29. 29.
    V. A. Shcherbacov, “On definitions of groupoids closely connected with quasigroups,” Bul. Acad. Şti. Rep. Moldova, Mat., No. 2, 43–54 (2007).Google Scholar
  30. 30.
    K. K. Shchukin, “On simple medial quasigroups,” Mat. Issled., 120, 114–117 (1991).MathSciNetGoogle Scholar
  31. 31.
    J. D. H. Smith, An introduction to Quasigroups and Their Representation, Stud. Adv. Math., Chapman and Hall/CRC, London (2007).Google Scholar
  32. 32.
    A. K. Suschkewitsch, The Theory of Generalized Groups [in Russian], Kiev, DNTVU (1937).Google Scholar
  33. 33.
    H. A. Thurston, “Equivalences and mappings,” Proc. London Math. Soc., 3, No. 2, 175–182 (1952).CrossRefMathSciNetGoogle Scholar
  34. 34.
    I. I. Valutse and N. I. Prodan, “Structures of congruences on a groupoid with division and on its semigroup of elementary translations,” Gen. Algebra Discrete Geom., 159, 18–21 (1980).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • V. A. Shcherbacov
    • 1
    Email author
  • A. Kh. Tabarov
    • 2
  • D. I. Puşcaşu
    • 1
  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.Faculty of Mechanics and Mathematics, Department of Higher MathematicsTajik National State UniversityDushanbeTajikistan

Personalised recommendations