Holomorphic functions of exponential type and duality for stein groups with algebraic connected component of identity

Article

Abstract

We suggest a generalization of Pontryagin duality from the category of commutative, complex Lie groups to the category of (not necessarily commutative) Stein groups with algebraic connected component of identity. In contrast to the other similar generalizations, in our approach the enveloping category consists of Hopf algebras (in a proper symmetrical monoidal category).

References

  1. 1.
    S. S. Akbarov, “Stereotype spaces, algebras, homologies: An outline,” in: A. Ya. Helemskii, ed., Topological Homology, Nova Science Publishers (2000), pp. 1–29.Google Scholar
  2. 2.
    S. S. Akbarov, “Pontryagin duality in the theory of topological vector spaces and in topological algebra,” J. Math. Sci., 113, No. 2, 179–349 (2003).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    S. S. Akbarov, “Pontryagin duality and topological algebras,” in: K. Jarosz and A. Soltysiak, eds., Topological Algebras, Their Applications and Related Topics, Vol. 67, Banach Center Publications (2005), pp. 55–71.Google Scholar
  4. 4.
    V. A. Artamonov, V. N. Salii, L. A. Skornyakov, L. N. Shevrin, and E. G. Shul’geifer, General Algebra [in Russian], Vol. 2, Nauka, Moscow (1991).MATHGoogle Scholar
  5. 5.
    N. Bourbaki, Espaces Vectoriels Topologiques. Chaps. I–V, Hermann, Paris.Google Scholar
  6. 6.
    N. Bourbaki, Topologie Générale. Chaps. III–VIII, Hermann, Paris.Google Scholar
  7. 7.
    K. Brauner, “Duals of Fréchet spaces and a generalization of the Banach–Dieudonné theorem,” Duke Math. J., 40, No. 4, 845–855 (1973).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press (1995).Google Scholar
  9. 9.
    A. Van Daele, “Dual pairs of Hopf ∗-algebras,” Bull. London Math. Soc., 25, 209–230 (1993).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Van Daele, “Multiplier Hopf algebras,” Trans. Amer. Math. Soc., 342, 917–932 (1994).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Van Daele, “An algebraic framework for group duality,” Adv. Math., 140, 323–366 (1998).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Van Daele, The Haar Measure on Some Locally Compact Quantum Groups, http://arXiv.org/abs/math/0109004v1 (2001).
  13. 13.
    S. Dăscălescu, C. Năstăsescu, and Ş. Raianu, Hopf Algebras, Marcel Dekker (2001).Google Scholar
  14. 14.
    M. Enock and J.-M. Schwartz, “Une dualité dans les algèbres de von Neumann,” Note C. R. Acad. Sci. Paris, 277, 683–685 (1973).MATHMathSciNetGoogle Scholar
  15. 15.
    M. Enock and J.-M. Schwartz, “Une catégorie d’algèbres de Kac,” Note C. R. Acad. Sci. Paris, 279, 643–645 (1974).MATHMathSciNetGoogle Scholar
  16. 16.
    M. Enock and J.-M. Schwartz, “Une dualité dans les algèbres de von Neumann,” Supp. Bull. Soc. Math. France Mém., 44, 1–144 (1975).MathSciNetGoogle Scholar
  17. 17.
    M. Enock and J.-M. Schwartz, Kac Algebras and Duality of Locally Compact Groups, Springer (1992).Google Scholar
  18. 18.
    H. Grauert and R. Remmert, Theory of Stein Spaces, Springer (1977).Google Scholar
  19. 19.
    E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 2, Springer (1963).Google Scholar
  20. 20.
    R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press (1985).Google Scholar
  21. 21.
    H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart (1981).MATHGoogle Scholar
  22. 22.
    S. Kakutani and V. Klee, “The finite topology of a linear space,” Arch. Math., 14, No. 1, 55–58 (1963).MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    C. Kassel, Quantum Groups, Springer (1995).Google Scholar
  24. 24.
    M. Krein, “A principle of duality for bicompact groups and quadratic block algebras,” Dokl. Akad. Nauk SSSR, 69, 725–728 (1949).MathSciNetGoogle Scholar
  25. 25.
    J. Kustermans, W. Pusz, P. M. So_ltan, S. Vaes, A. Van Daele, L. Vainerman, and S. L. Woronowicz, “Locally compact quantum groups,” in: P. M. Hajak, ed., Quantum Symmetry in Noncommutative Geometry, Locally Compact Quantum Groups. Lect. Notes School/Conf. on Noncommutative Geometry and Quantum Groups, Warsaw, 2001, Banach Center Publications, to appear.Google Scholar
  26. 26.
    J. Kustermans and S. Vaes, “Locally compact quantum groups,” Ann. Sci. École Norm. Sup., 4è sér., 33, 837–934 (2000).MATHMathSciNetGoogle Scholar
  27. 27.
    B. Ya. Levin, Lectures on Entire Functions, Amer. Math. Soc. (1996).Google Scholar
  28. 28.
    S. MacLane, Categories for the Working Mathematician, Springer, Berlin (1971).Google Scholar
  29. 29.
    K.-H. Neeb, Holomorphy and Convexity in Lie Theory, Walter de Gruyter (2000).Google Scholar
  30. 30.
    A. Pietsch, Nukleare Lokalkonvexe Raume, Akademie, Berlin (1965).Google Scholar
  31. 31.
    A. Yu. Pirkovskii, “Arens–Michael envelopes, homological epimorphisms, and relatively quasifree algebras,” Tr. Mosk. Mat. Obshch., 69, 34–123 (2008).Google Scholar
  32. 32.
    L. Pontrjagin, “The theory of topological commutative groups,” Ann. Math., 35, No. 2, 361–388 (1934).CrossRefMathSciNetGoogle Scholar
  33. 33.
    W. Rudin, Functional Analysis, McGraw-Hill (1973).Google Scholar
  34. 34.
    N. Saavedra Rivano, Catègories Tannakiennes, Lect. Notes Math., Vol. 265, Springer (1972).Google Scholar
  35. 35.
    P. Schauenburg, “On the braiding on a Hopf algebra in a braided category,” New York J. Math., 4, 259–263 (1998).MATHMathSciNetGoogle Scholar
  36. 36.
    B. V. Shabat, Introduction to Complex Analysis [in Russian], Vol. I, Nauka, Moscow (1985).Google Scholar
  37. 37.
    B. V. Shabat, Introduction to Complex Analysis [in Russian], Vol. II, Nauka, Moscow (1985).Google Scholar
  38. 38.
    H. H. Shaeffer, Topological Vector Spaces, Macmillan (1966).Google Scholar
  39. 39.
    M. F. Smith, “The Pontrjagin duality theorem in linear spaces,” Ann. Math., 56, No. 2, 248–253 (1952).CrossRefGoogle Scholar
  40. 40.
    R. Street, Quantum Groups: A Path to Current Algebra, Australian Math. Soc. Lect. Ser., No. 19, Cambridge (2007).Google Scholar
  41. 41.
    M. E. Sweedler, “Cocommutative Hopf algebras with antipode,” Bull. Amer. Math. Soc., 73, No. 1, 126–128 (1967).MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    J. L. Taylor, Several Complex Variables with Connections to Algebraic Geometry and Lie Groups, Grad. Stud. Math., Vol. 46, Amer. Math. Soc., Providence (2002).Google Scholar
  43. 43.
    L. I. Vainerman, “A characterization of objects that are dual to locally compact groups,” Funkts. Anal. Prilozen., 8, No. 1, 75–76 (1974).CrossRefMathSciNetGoogle Scholar
  44. 44.
    L. I. Vainerman and G. I. Kac, “Nonunimodular ring groups, and Hopf–von Neumann algebras,” Dokl. Akad. Nauk SSSR, 211, 1031–1034 (1973).MathSciNetGoogle Scholar
  45. 45.
    L. I. Vainerman and G. I. Kac, “Nonunimodular ring groups and Hopf–von Neumann algebras,” Mat. Sb., 94 (136), 194–225, 335 (1974).MathSciNetGoogle Scholar
  46. 46.
    E. B. Vinberg and A. L. Onishchik, A Seminar on Lie Groups and Algebraic Groups [in Russian], URSS, Moscow (1995).Google Scholar
  47. 47.
    S. Wang, Quantum ‘ax + b’ group as quantum automorphism group of k[x], http://arXiv.org/abs/math/9807094v2 (1998).
  48. 48.
    S. L. Woronowicz, “Quantum ‘az + b’ group on complex plane,” Int. J. Math., 12, No. 4, 461–503 (2001).MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    S. Zhang, Braided Hopf Algebras, arXiv:math.RA/0511251, v8 25 May 2006.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.All-Russian Institute of Scientific and Technical Information of the Russian Academy of Sciences (VINITI RAN)MoscowRussia

Personalised recommendations