Algebras with skew-symmetric identity of degree 3

Article

Abstract

Algebras with one of the following identities are considered:
$$ \begin{array}{*{20}{c}} {\left[ {\left[ {{t_1},\;{t_2}} \right],\;{t_3}} \right] + \left[ {\left[ {{t_2},\;{t_3}} \right],\;{t_1}} \right] + \left[ {\left[ {{t_3},\;{t_1}} \right],\;{t_2}} \right] = 0,} \\ {\left[ {{t_1},\;{t_2}} \right]{t_3} + \left[ {{t_2},\;{t_3}} \right]{t_1} + \left[ {{t_3},\;{t_1}} \right]{t_2} = 0,} \\ {\left\{ {\left[ {{t_1},\;{t_2}} \right],\;{t_3}} \right\} + \left\{ {\left[ {{t_2},\;{t_3}} \right],\;{t_1}} \right\} + \left\{ {\left[ {{t_3},\;{t_1}} \right],\;{t_2}} \right\} = 0,} \\ \end{array} $$
where [t 1 , t 2] = t 1 t 2 − t 2 t 1 and {t 1, t 2} = t 1 t 2 + t 2 t 1 . We prove that any algebra with a skew-symmetric identity of degree 3 is isomorphic or anti-isomorphic to one of such algebras or can be obtained as their q-commutator algebras.

References

  1. 1.
    A. A. Balinskii and S. P. Novikov, “Poisson bracket of Hamiltonian type, Frobenius algebras and Lie algebras,” Dokl. AN SSSR, 283, No. 5, 1036–1039 (1985).MathSciNetGoogle Scholar
  2. 2.
    A. S. Dzhumadil’daev, “Novikov–Jordan algebras,” Commun. Algebra, 30, No. 11, 5207–5240 (2002).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. S. Dzhumadil’daev and A. Bakirova, “Simple two-sided anti-Lie-admissible algebras,” J. Math. Sci., 161, No. 1, 31–36 (2009).CrossRefGoogle Scholar
  4. 4.
    A. S. Dzhumadil’daev and K. M. Tulenbaev, “Exceptional 0-Alia algebras,” J. Math. Sci., 161, No. 1, 37–40 (2009).CrossRefGoogle Scholar
  5. 5.
    V. Ginsburg and M. M. Kapranov, “Koszul duality for operads,” Duke Math. J., 76, 203–272 (1994).CrossRefMathSciNetGoogle Scholar
  6. 6.
    J. M. Osborn, “Varieties of algebras,” Adv. Math., 8, 163–369 (1972).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. M. Osborn, “Novikov algebras,” Nova J. Algebra Geom., 1, 1–14 (1992).MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Kazakh-British Technical UniversityAlmatyKazakhstan

Personalised recommendations