Journal of Mathematical Sciences

, Volume 160, Issue 6, pp 727–736

Configuration spaces and signature formulas

  • G. Khimshiashvili
Article

Abstract

We show that nontrivial topological and geometric information about configuration spaces of linkages and tensegrities can be obtained using the signature formulas for the mapping degree and Euler characteristic. In particular, we prove that the Euler characteristics of such configuration spaces can be effectively calculated using signature formulas. We also investigate the critical points of signed area function on the configuration space of a planar polygon. We show that our approach enables one to effectively count the critical points in question and discuss a few related problems. One of them is concerned with the so-called cyclic polygons and formulas of Brahmagupta type. We describe an effective method of counting cyclic configurations of a given polygon and formulate four general conjectures about the critical points of the signed area function on the configuration space of a generic planar polygon. Several concrete results for planar quadrilaterals and pentagons are also presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Agrachev and R. Gamkrelidze, “Quadratic mapping and smooth vector-functions: Euler characteristic of the level set,” Itogi Nauki Techn. Sovr. Probl. Mat. Noveishie Dostizhenia, 35, 179–239 (1989).MATHMathSciNetGoogle Scholar
  2. 2.
    V. Arnold, A. Varchenko, and S. Gusein-Zade, Singularities of Differentiable Mappings [in Russian], Nauka, Moscow (2005).Google Scholar
  3. 3.
    G. Bibileishvili, “On configuration spaces of planar polygons and graphs,” Bull. Georgian Acad. Sci., 168, 203–206 (2003).Google Scholar
  4. 4.
    J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Springer-Verlag, Berlin–Heidelberg–New York (1998).MATHGoogle Scholar
  5. 5.
    J. Bruce, “Euler characteristics of real varieties,” Bull. London Math. Soc., 22, 213–219 (1990).MathSciNetGoogle Scholar
  6. 6.
    B. Dubrovin, S. Novikov, and A. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1988).Google Scholar
  7. 7.
    D. Eisenbud and H. Levine, “An algebraic formula for the degree of a C map germ,” Ann. Math., 106, 19–44 (1977).CrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Fedorchuk and I. Pak, “Rigidity and polynomial invariants of convex polytopes,” Duke Math. J., 129, No. 2, 371–404 (2005).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    G. Giorgadze, “Quadratic mappings and configuration spaces,” Banach Center Publ., 62, 159–172 (2004).MathSciNetGoogle Scholar
  10. 10.
    M. Hirsch, Differential Topology, Springer-Verlag, Berlin–Heidelberg–New York (1976).MATHGoogle Scholar
  11. 11.
    Y. Kamiyama, “The Euler characteristic of the moduli space of polygons in higher-dimensional Euclidean space,” Kyushu J. Math., 54, 333–369 (2000).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Kapovich and J. Millson, “Universality theorems for configuration spaces of planar linkages,” Topology, 41, 1051–1107 (2002).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    G. Khimshiashvili, “On the local degree of a smooth mapping,” Bull. Acad. Sci. Georgian SSR, 85, 309–312 (1977).MATHGoogle Scholar
  14. 14.
    G. Khimshiashvili, “On the cardinality of a semi-algebraic subset,” Georgian Math. J., 1, 111–120 (1994).CrossRefGoogle Scholar
  15. 15.
    G. Khimshiashvili, “Signature formulae for topological invariants,” Proc.A. Razmadze Math. Inst., 125, 1–121 (2001).MATHMathSciNetGoogle Scholar
  16. 16.
    G. Khimshiashvili, “On configuration spaces of planar pentagons,” Zap. Nauch. Semin. POMI, 292, 120–129 (2002).Google Scholar
  17. 17.
    G. Khimshiashvili, “Circular configurations of planar polygons,” Bull. Georgian Natl. Acad. Sci., 176, No. 2, 27–30 (2008).Google Scholar
  18. 18.
    A. Lecki and Z. Szafraniec, “An algebraic method for calculating the topological degree,” Banach Center Publ., 35, 73–83 (1996).MathSciNetGoogle Scholar
  19. 19.
    A. Pugh, An Introduction to Tensegrity, Univ. Calif. Press, Berkeley (1976).Google Scholar
  20. 20.
    D. Robbins, “Areas of polygons inscribed in a circle,” Discr. Comput. Geom., 12, 223–236 (1994).MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    W. Thurston, “Shapes of polyhedra and triangulations of the sphere,” Geom. Topol. Monogr., 1, 511–549 (1998).CrossRefMathSciNetGoogle Scholar
  22. 22.
    V. Varfolomeev, “Inscribed polygons and Heron polynomials,” Sb. Math., 194, 311–321 (2003).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • G. Khimshiashvili
    • 1
  1. 1.I. Tchavtchavadze State University, A. Razmadze Mathematical InstituteTbilisiGeorgia

Personalised recommendations