Advertisement

Journal of Mathematical Sciences

, Volume 160, Issue 5, pp 537–678 | Cite as

Dynamics of an ideal liquid with a free surface in conformal variables

  • R. V. Shamin
Article

Abstract

Problems of mathematical hydrodynamics with a free surface in conformal variables are studied. Analytical solvability in Hilbert space scale and numerical techniques of finding approximate solutions are considered. The lifetime for solutions, a constructive evaluation, and application of mathematical statistics to the solvability of nonlinear equations are studied. Multiple numerical experiments of the methods considered are shown. A lot of these methods can be applied not only to problems of mathematical hydrodynamics with a free surface but to abstract Cauchy–Kovalevskaya problems in Banach spaces scale as well.

Keywords

Free Surface Surface Wave Machine Accuracy Taylor Instability Abstract Cauchy Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Alberg, A. Nilson, and J. Walsh, The Theory of Splines and Their Applications [in Russian], Mir, Moscow (1972).MATHGoogle Scholar
  2. 2.
    G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, N.Y. (1983).MATHGoogle Scholar
  3. 3.
    K. I. Babenko, Foundations of Numerical Analysis [in Russian], Nauka, Moscow (1986).MATHGoogle Scholar
  4. 4.
    K. I. Babenko, V.Yu. Petrovich, and A. I. Rakhmanov, “A computational experiment in the theory of surface waves of finite amplitude,” Sov. Math. Dokl., 38, No. 2, 327–331 (1989).MathSciNetGoogle Scholar
  5. 5.
    K. I. Babenko, V.Yu. Petrovich, and A. I. Rakhmanov, “On a demonstrative experiment in the theory of surface waves of finite amplitude,” Sov. Math. Dokl., 38, No. 3, 626–630 (1989).MATHMathSciNetGoogle Scholar
  6. 6.
    O. M. Belotserkovski and A. M. Oparin, Numerical Experiment on Turbulence: from Order to Chaos. Unlimited Possibilities and Possible Limitations [in Russian], Nauka, Moscow (2001).Google Scholar
  7. 7.
    P. L. Butzer and H. Berens, Semigroups of Operators and Approximations, Springer-Verlag, N.-Y. (1967).Google Scholar
  8. 8.
    W. Craig and C. Sulem, “Numerical simulation of gravity waves,” J. Comput. Phys., 108, 73–83 (1993).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    W. Craig and C. E. Wayne, “Mathematical aspects of surface water waves,” Russ. Math. Surv., 62, No. 3, 453–472 (2007).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. I. Dyachenko, E. A. Kuznetsov, M. D. Spector, and V. E. Zakharov, “Analytical description of the free surface dynamics of an ideal liquid (canonical formalism and conformal mapping),” Phys. Lett. A, 221, 73–79 (1996).CrossRefGoogle Scholar
  11. 11.
    A. I. Dyachenko, V. E. Zakharov, and E. A. Kuznetsov, “Nonlinear dynamics of the free surface of an ideal liquid,” Plasma Phys. Rep., 22, No. 10, 916–928 (1999).Google Scholar
  12. 12.
    D. Gaier, Vorlesungen uber Approximation im Komplexen, Birkhauser-Verlag, Basel–Boston–Berlin (1980).Google Scholar
  13. 13.
    R. M. Garipov, “Unsteady waves above an underwater ridge,” Dokl. Akad. Nauk, 161, No. 3, 547–550 (1965).MathSciNetGoogle Scholar
  14. 14.
    N. M. Guenter, “On the main problem of hydrodynamics,” Izv. Fiz.-Mat. Inst. V. A. Steklova, 2, 1–168 (1927).Google Scholar
  15. 15.
    N. A. Innogamov, “The turbulent stage of Taylor instability,” Pis’ma Zh. Tekh. Fiz., 4, No. 4, 743–747 (1978).Google Scholar
  16. 16.
    S. A. Kalmykov and Yu. I. Shokin, Methods of Interval Analysis [in Russian], Nauka, Novosibirsk (1986).MATHGoogle Scholar
  17. 17.
    T. Kato, “On classical solutions of the two-dimensional nonstationary Euler equation,” ARMA, 25, 188–200 (1967).MATHCrossRefGoogle Scholar
  18. 18.
    A. N. Kolmogorov and S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Graylock Press, Albany, New York (1961).MATHGoogle Scholar
  19. 19.
    N.P. Kornejchuk, Splines in Approximation Theory [in Russian], Nauka, Moscow (1984).MATHGoogle Scholar
  20. 20.
    G. Kramer, Mathematical Methods of Statistisc [in Russian], Mir, Moscow (1975).Google Scholar
  21. 21.
    A.A Kurkin and E.N. Pelinovskii, Freak Waves: Facts, the Theory and Modelling [in Russian], Nizhegorodskiy Gos. Tekh. Univ., Nizhniy Novgorod (2004).Google Scholar
  22. 22.
    T. Levi-Civita, “Determination rigoreuse des ondes permanentes d’ampleur finie,” Math. Ann., 93, 264–314 (1925).MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    D. J. Lewis, “The instability of liquid surface when accelerated in the direction perpendicular to their planes. II,” Proc. Roy. Soc. Ser. A, 202, No. 1068, 81–96 (1950).CrossRefGoogle Scholar
  24. 24.
    L. Lichtenstein, Grundlagen der Hydromechanik, Springer, Berlin (1929).MATHGoogle Scholar
  25. 25.
    J.-L. Lions and E. Magenes, Problemes aux Limites non Homogenes et Applications, Dunod, Paris (1968).MATHGoogle Scholar
  26. 26.
    L. A. Ljusternik and V. I. Sobolev, Elements of Functional Analysis [in Russian], Nauka, Moscow (1965).Google Scholar
  27. 27.
    L. G. Loytsyanskii, Liquid and Gas Mechanics [in Russian], Drofa, Moscow (2003).Google Scholar
  28. 28.
    V. I. Nalimov, “A priori estimates of the solutions of elliptic equations with application to Cauchy–Poisson problem,” Sov. Math. Dokl., 10, 1350–1354 (1969).Google Scholar
  29. 29.
    V. I. Nalimov, “The Cauchy–Poisson problem,” Dinam. Sploshn. Sredy, 18, 104–210 (1974).MathSciNetGoogle Scholar
  30. 30.
    V. I. Nalimov, “Nonstationary vortex surface waves,” Sib. Math. J., 37, No. 6, 1356–1366 (1996).CrossRefMathSciNetGoogle Scholar
  31. 31.
    A. I. Nekrasov, “On steady waves,” Izv. Ivanovo-Voznesenskogo Politekh. Inst., 3, 52–65 (1921).Google Scholar
  32. 32.
    A. I. Nekrasov, The Exact Theory of Steady Waves on the Surface of a Heavy Fluid [in Russian], Izdat. Akad. Nauk SSSR, Moscow (1951).Google Scholar
  33. 33.
    L. Nirenberg, Topics in Nonlinear Functional Analysis [Russian translation], Mir, Moscow (1977).MATHGoogle Scholar
  34. 34.
    T. Nishida, “A note on a theorem of Nirenberg,” J. Differ. Geom., 12, 629—633 (1977).MATHMathSciNetGoogle Scholar
  35. 35.
    L. V. Ovsyannikov, “A nonlinear Cauchy problem in a scale of Banach spaces,” Sov. Math. Dokl., 12, 1497–1502 (1971).MATHGoogle Scholar
  36. 36.
    J. Peetre, Introduction to Interpolation. Lecture Notes, Department of Mathematics, Lund (1966).Google Scholar
  37. 37.
    B. E. Protopopov, “Numerical modeling of surface waves in a channel of variable depth,” Dinam. Sploshn. Sredy, 84, 91–105 (1988).MATHGoogle Scholar
  38. 38.
    V. S. Pugachev, Probability Theory and Mathematical Statistics [in Russian], Fizmatlit, Moscow (2002).MATHGoogle Scholar
  39. 39.
    R. V. Shamin, Numerical Experiments in Oceanic Surface Wave Modelling [in Russian], Nauka, Moscow (2008).Google Scholar
  40. 40.
    R. V. Shamin, “On an estimate of the existence time of solutions of the Cauchy–Kovalevskaya system with examples from the hydrodynamics of an ideal fluid with a free surface,” Sovrem. Mat. Fundam. Napravl., 21, 133–148 (2007).Google Scholar
  41. 41.
    R. V. Shamin, “On the numerical method on the motion of an ideal liquid with a free surface,” Sib. Zh. Vychisl. Mat., 9, No. 4, 325–340 (2006).Google Scholar
  42. 42.
    R. V. Shamin, “On the existence of smooth solutions of Dyachenko equations describing unsteady flows of an ideal liquid with a free surface,” Dokl. RAN, 406, No. 5, 112–113 (2006).MathSciNetGoogle Scholar
  43. 43.
    R. V. Shamin, “On the estimation of the lifetime of solutions of an equation describing surface waves,” Dokl. RAN, 418, No. 5, 112–113 (2008).MathSciNetGoogle Scholar
  44. 44.
    R. V. Shamin, “On initial data spaces for differential equations in Hilbert space,” Math. Sb., 194, No. 9–10, 1411–1426 (2003).MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Yu. I. Shokin, Interval Analysis [in Russian], Nauka, Novosibirsk (1981).MATHGoogle Scholar
  46. 46.
    S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, American Mathematical Society, Providence, RI (1991).MATHGoogle Scholar
  47. 47.
    V. A. Solonnikov, “Solvability of the problem on evolution of a viscous incompressible liquid bounded by a free surface on a finite-time interval,” St. Petersburg Math. J., 3, No. 1, 189–220 (1992).MathSciNetGoogle Scholar
  48. 48.
    E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, New Jersey (1970).MATHGoogle Scholar
  49. 49.
    G. G. Stokes, Mathematical and Physical Papers, Cambridge University Press, 1 (1880).Google Scholar
  50. 50.
    G. Taylor, “The instability of a liquid surface when accelerated in a direction perpendicular to their planes. I,” Proc. Roy. Soc. Ser. A, 201, No. 1065, 192–196 (1950).MATHCrossRefGoogle Scholar
  51. 51.
    F. Treves, Ovsyannikov theorem and hyperdifferential operators, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro (1968).Google Scholar
  52. 52.
    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Veb Deutscher Verlag der Wissenschaften, Berlin (1978).Google Scholar
  53. 53.
    W. Tsai and D. Yue, “Computations of nonlinear free-surface flows,” Annu. Rev. Fluid Mech., 28, 249–278 (1996).MathSciNetGoogle Scholar
  54. 54.
    V. A. Vasilenko, Spline Functions: Theory, Algorithms, Programs [in Russian], Nauka, Novosibirsk (1983).MATHGoogle Scholar
  55. 55.
    F.P. Vasil’ev, Numerical Methods for Solving Extremal Problems [in Russian], Nauka, Moscow (1988).MATHGoogle Scholar
  56. 56.
    V. V. Voinov and O.V. Voinov, “Numerical method of calculating nonstationary motions of an ideal incompressible liquid with free surfaces,” Sov. Phys., Dokl., 20, 179–180 (1975).MATHGoogle Scholar
  57. 57.
    G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, N.Y.-London-Sydney (1974).MATHGoogle Scholar
  58. 58.
    S. Wu, “Well-posedness in Sobolev spaces of the full water wave problem in 3-D,” J. Amer. Math. Soc., 12, No. 2, 445–495 (1999).MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    V. I. Yudovich, “Nonstationary flows of an ideal incompressible liquid,” Zh. Vychisl. Mat. Mat. Fiz., 3, 1407–1456 (1963).MATHGoogle Scholar
  60. 60.
    V.Ye. Zakharov, “The stability of periodic waves of finite amplitude on surface of a deep liquid,” Prikl. Mekh. Teor.Fiz., 2, 86–94 (1968).Google Scholar
  61. 61.
    V. E. Zakharov, A. I. Dyachenko, and A. O. Prokofiev, “Freak waves as nonlinear stage of Stokes wave modulation instability,” Eur. J. Mech. B Fluids, 25, 677–692 (2006).MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev “New method for numerical simulation of a nonstationary potential flow of incompressible liquid with a free surface,” Eur. J. Mech. B Fluids, 21, 283–291 (2002).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Shirshov Institute of Oceanology of the Russian Academy of Sciences Laboratory of nonlinear processesMoscowRussia

Personalised recommendations