Advertisement

Journal of Mathematical Sciences

, Volume 159, Issue 6, pp 833–836 | Cite as

Lebesgue measure in infinite dimension as an infinite-dimensional distribution

  • R. Léandre
Article

Abstract

Physicists deal with the formal Lebesgue measure on the space of smooth maps from one manifold to another. The aim of the present paper is to give two definitions of this measure as a distribution: using functional spaces of noncommutative geometry and those of white-noise theory.

Keywords

Noncommutative Geometry Bounded Continuous Function Feynman Path Cyclic Cohomology Fredholm Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Accardi and M. Bozejko, “Interacting Fock spaces and gaussianization of probability measures,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1, 663–670 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    L. Accardi and M. Nahmi, “Interacting Fock spaces and orthogonal polynomials in several variables,” in: N. Obata, T. Matsui, and A. Hora, eds., Non-Commutativity, Infinite-Dimensionality and Probability at the Crossroads, World Scientific (2003), pp. 192–205.Google Scholar
  3. 3.
    S. Albeverio, “Wiener and Feynman path integrals and their applications,” in: V. Mandrekar and P. R. Masani, eds., Proc. Norbert Wiener Centenary Congress, East Lansing, MI, USA, November 27–December 3, 1994 Proc. Symp. Appl. Math., Vol 52, Amer. Math. Soc., Providence (1997), pp. 163–194.Google Scholar
  4. 4.
    Y. M. Berezansky and Y. O. Kondratiev, Spectral Methods in Infinite-Dimensional Analysis, Vols. 1, 2, Kluwer Academic (1995).Google Scholar
  5. 5.
    P. Cartier and C. Dewitt-Morette, book in preparation.Google Scholar
  6. 6.
    A. Connes, “Entire cyclic cohomology of Banach algebras and characters of θ-summable Fredholm modules,” K-Theory, 1, 519–548 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Gannoun, R. Hachaichi, H. Ouerdiane, and A. Rezgui, “Un théorème de dualité entre espaces de fonctions holomorphes à croissance exponentielle,” J. Funct. Anal., 171, 1–14 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    E. Getzler, Cyclic Homology and the Path Integral of the Dirac Operator, preprint (1988).Google Scholar
  9. 9.
    E. Getzler and A. Szenes, “On the Chern character of a theta-summable Fredholm module,” J. Funct. Anal., 84, 343–357 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Gilkey, Invariance Theory, the Heat Equation and the Atiyah–Singer Theorem, CRC Press (1995).Google Scholar
  11. 11.
    C. Grosche and F. Steiner, Handbook on Feynman Path Integrals, Springer (1998).Google Scholar
  12. 12.
    T. Hida, Analysis of Brownian Functionals, Carleton Math. Lect. Notes, Vol. 13, Carleton Univ., Ottawa (1975).zbMATHGoogle Scholar
  13. 13.
    T. Hida, H. H. Kuo, J. Potthoff, and L. Streit, White Noise: An Infinite Dimensional Calculus, Kluwer Academic (1993).Google Scholar
  14. 14.
    A. Jaffe, “Quantum harmonic analysis and geometric invariants,” Adv. Math., 143, 1–110 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Jaffe, A. Lesniewski, and K. Osterwalder, “Quantum K-theory. The Chern character,” Comm. Math. Phys., 118, 1–14 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    G. Johnson and M. Lapidus, The Feynman Integral and Feynman Operational Calculus, Oxford Univ. Press (2000).Google Scholar
  17. 17.
    J. D. S. Jones and R. Léandre, “L p Chen forms on loop spaces,” in: M. Barlow and M. Bingham, eds., Stochastic Analysis, Cambridge Univ. Press (1991), pp. 104–162.Google Scholar
  18. 18.
    H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets, World Scientific (2004).Google Scholar
  19. 19.
    D. C. Khandrekar and L. Streit, “Constructing the Feynman integrand,” Ann. Physics, 1, 49–60 (1992).CrossRefGoogle Scholar
  20. 20.
    R. Léandre, “Cohomologie de Bismut–Nualart–Pardoux et cohomologie de Hochschild entiere,” in: J. Azéma, M. Emery, and M. Yor, eds., Sém. de Probabilités XXX in Honour of P. A. Meyer and J. Neveu, Lect. Notes Math., Vol. 1626, Springer (1996), pp. 68–100.Google Scholar
  21. 21.
    R. Léandre, “Theory of distribution in the sense of Connes–Hida and Feynman path integral on a manifold,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6, 505–517 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    R. Léandre, “White noise analysis, filtering equation and the index theorem for families,” in: H. Heyer and H. Saitô, eds., Infinite Dimensional Harmonic Analysis, to appear.Google Scholar
  23. 23.
    R. Léandre and H. Ouerdiane, Connes–Hida Calculus and Bismut–Quillen Superconnections, preprint.Google Scholar
  24. 24.
    R. Nest and B. Tsygan, “Algebraic index for families,” Adv. Math., 113, 151–205 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    N. Obata, White Noise Calculus and Fock Space, Lect. Notes Math., Vol. 1577, Springer (1994).Google Scholar
  26. 26.
    H. Ouerdiane, “Fonctionnelles analytiques avec conditions de croissance et application a l’analyse Gaussienne,” Jpn. J. Math., 20, 187–198 (1994).zbMATHMathSciNetGoogle Scholar
  27. 27.
    G. Roepstorff, Path Integral Approach to Quantum Physics. An Introduction, Springer (1994).Google Scholar
  28. 28.
    L. Schulman, Techniques and Application of Path Integration, Wiley (1981).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Institut de MathématiquesUniversité de BourgogneDijonFrance

Personalised recommendations