Advertisement

Journal of Mathematical Sciences

, Volume 158, Issue 6, pp 904–911 | Cite as

KZ equation, G-opers, quantum Drinfeld–Sokolov reduction, and quantum Cayley–Hamilton identity

  • D. TalalaevEmail author
  • A. Chervov
Article
  • 51 Downloads

The Lax operator of Gaudin-type models is a 1-form at the classical level. In virtue of the quantization scheme proposed by D. Talalaev, it is natural to treat the quantum Lax operator as a connection; this connection is a partcular case of the Knizhnik–Zamolodchikov connection. In this paper, we find a gauge trasformation that produces the “second normal form,” or the “Drinfeld–Sokolov” form. Moreover, the differential operator nurally corresponding to this form is given precisely by the quantum characteristic polynomial of the Lax operator (this operator is called the G-oper or Baxter operator). This observation allows us to relate solutions of the KZ and Baxter equations in an obvious way, and to prove that the immanent KZ equation has only meromorphic solutions. As a corollary, we obtain the quantum Cayley–Hamilton identity for Gaudin-type Lax operators (including the general \( \mathfrak{gl}_{n}[t] \) case). The presented construction sheds a new light on the geometric Langlands correspondence. We also discuss the relation with the Harish-Chandra homomorphism. Bibliography: 19 titles.

Keywords

Normal Form Gauge Transformation Classical Level Main Section Quantization Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Talalaev, Funct. Anal. Appl., 40, No. 1, 86–91 (2006).CrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Chervov and D. Talalaev, preprint arXiv:hep-th/0604128.
  3. 3.
    M. Gaudin, La Fonction d’Onde de Bethe, Masson, Paris (1983).zbMATHGoogle Scholar
  4. 4.
    M. Adler, Invent. Math., 50, 219–248 (1979).zbMATHCrossRefGoogle Scholar
  5. 5.
    B. Kostant, London Math. Soc. Lect. Notes Series, 34, 287–316 (1979).Google Scholar
  6. 6.
    W. W. Symes, Invent. Math., 59, 13–51 (1980).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    V. G. Knizhnik and A. B. Zamolochikov, Nucl. Phys. B, 247, 83–103 (1984).zbMATHCrossRefGoogle Scholar
  8. 8.
    A. Chervov and D. Talalaev, preprint arXiv:hep-th/0409007.
  9. 9.
    E. Frenkel, preprint arXiv:q-alg/9506003.
  10. 10.
    E. Mukhin, V. Tarasov, and A. Varchenko, preprint arXiv:math.AG/0512299.
  11. 11.
    A. J. Bracken and H. S. Green, J. Math. Phys., 12, 2099–2106 (1971).CrossRefMathSciNetGoogle Scholar
  12. 12.
    M. D. Gould, J. Austral. Math. Soc. B, 26, 257–283 (1985).zbMATHCrossRefGoogle Scholar
  13. 13.
    A. J. Macfarlane and H. Pfeiffer, preprint arXiv:math-ph/9907024.
  14. 14.
    A. P. Isaev, O. V. Ogievetsky, and P. N. Pyatov, preprint arXiv:math.QA/9912197.
  15. 15.
    D. I. Gurevich, P. N. Pyatov, and P. A. Saponov, preprint arXiv:math.QA/0412192.
  16. 16.
    O. Ogievetsky and P. Pyatov, preprint arXiv:math.QA/0511618.
  17. 17.
    A. I. Molev, preprint arXiv:math.QA/0211288.
  18. 18.
    A. A. Kirillov, Moscow Math. J., 1, No. 1, 49–63 (2000).MathSciNetGoogle Scholar
  19. 19.
    I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, and J.-Y. Thibon, preprint arXiv:hep-th/9407124.

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Institute Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations