Journal of Mathematical Sciences

, Volume 158, Issue 5, pp 605–614 | Cite as

Complexity of the identity checking problem for finite semigroups


We prove that the identity checking problem in a finite semigroup S is co-NP-complete whenever S has a nonsolvable subgroup or S is the semigroup of all transformations on a 3-element set. Bibliography: 31 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Almeida, S. V. Plescheva, and M. V. Volkov, “An application of group generic implicit operators to the complexity of identity checking in finite semigroups,” in: International Algebraic Conference Dedicated to the Centinenial of P. G. Kontorovich and the 70th Birthday of L. N. Shevrin, Abstracts, Ural State University, Ekaterinburg (2005), pp. 16–17.Google Scholar
  2. 2.
    J. Almeida and M. V. Volkov, “Subword complexity of profinite words and subgroups of free profinite semigroups,” Internat. J. Algebra Comput., 16, No. 2, 221–258 (2006).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    C. Bergman and G. Slutzki, “Complexity of some problems concerning varieties and quasi-varieties of algebras,” SIAM J. Comput., 30, No. 2, 359–382 (2000).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    S. Burris and J. Lawrence, “The equivalence problem for finite rings,” J. Symbolic Comput., 15, No. 1, 67–71 (1993).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    S. Burris and J. Lawrence, “Results on the equivalence problem for finite groups,” Algebra Universalis, 52, No. 4, 495–500 (2005).CrossRefMathSciNetGoogle Scholar
  6. 6.
    C. C. Edmunds, “On certain finitely based varieties of semigroups,” Semigroup Forum, 15, No. 1, 21–39 (1977).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco (1979).MATHGoogle Scholar
  8. 8.
    G. Horváth, J. Lawrence, L. Mérai, and Cs. Szabó, “The complexity of the equivalence problem for nonsolvable groups,” Bull. London Math. Soc., 39, No. 3, 433–438 (2007).MATHCrossRefGoogle Scholar
  9. 9.
    G. Horváth and Cs. Szabó, “The complexity of checking identities over finite groups,” Internat. J. Algebra Comput., 16, No. 5, 931–939 (2006).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    H. B. Hunt III and R. E. Stearns, “The complexity of equivalence for commutative rings,” J. Symbolic Comput., 10, No. 5, 411–436 (1990).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Jackson and R. McKenzie, “Interpreting graph colorability in finite semigroups,” Internat. J. Algebra Comput., 16, No. 1, 119–140 (2006).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J. Kalicki, “On comparison of finite algebras,” Proc. Amer. Math. Soc., 3, No. 1, 36–40 (1952).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    M. I. Kargapolov and J. I. Merzljakov, Fundamentals of the Theory of Groups, Springer, New York–Berlin (1979).MATHGoogle Scholar
  14. 14.
    O. G. Kharlampovich and M. V. Sapir, “Algorithmic problems in varieties,” Internat. J. Algebra Comput., 5, Nos. 4–5, 379–602 (1995).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Kisielewicz, “Complexity of semigroup identity checking,” Internat. J. Algebra Comput., 14, No. 4, 455–464 (2004).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    O. Klíma, “Complexity issues of checking identities in finite monoids,” Semigroup Forum, accepted.Google Scholar
  17. 17.
    M. Kozik, “On some complexity problems in finite algebras,” PhD Thesis, Vanderbilt University, Nashville (2004).Google Scholar
  18. 18.
    M. Kozik, “Computationally and algebraically complex finite algebra membership problems,” Internat. J. Algebra Comput., 17, No. 8, 1635–1666 (2007).MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    M. Kozik, “Varietal membership problem is 2-EXPTIME complete,” submitted.Google Scholar
  20. 20.
    R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin–Heidelberg–New York (1977).MATHGoogle Scholar
  21. 21.
    C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading (1994).MATHGoogle Scholar
  22. 22.
    J.-E. Pin, Varieties of Formal Languages, Plenum, New York (1986).MATHGoogle Scholar
  23. 23.
    S. V. Plescheva and V. Vértesi, “Complexity of the identity checking problem in a 0-simple semigroup,” Izv. Ural. Gos. Univ., No. 43, 72–102 (2006).Google Scholar
  24. 24.
    S. Seif, “The Perkins semigroup has co-NP-complete term-equivalence problem,” Internat. J. Algebra Comput., 15, No. 2, 317–326 (2005).MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    S. Seif and Cs. Szabó, “Computational complexity of checking identities in 0-simple semigroups and matrix semigroups over finite fields,” Semigroup Forum, 72, No. 2, 207–222 (2006).MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    E. P. Simel’gor, “Identities in a finite symmetric semigroup,” Modern Algebra, 1, 174–188 (1974).MathSciNetGoogle Scholar
  27. 27.
    Cs. Szabó and V. Vértesi, “The complexity of the word-problem for finite matrix rings,” Proc. Amer. Math. Soc., 132, No. 12, 3689–3695 (2004).MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Cs. Szabó and V. Vértesi, “The complexity of checking identities for finite matrix rings,” Algebra Universalis, 51, No. 4, 439–445 (2004).MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Cs. Szabó and V. Vértesi, “The identity checking problem in finite rings,” submitted.Google Scholar
  30. 30.
    Z. Székely, “Computational complexity of the finite algebra membership problem for varieties,” Internat. J. Algebra Comput., 12, No. 6, 811–823 (2002).MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    P. Tesson, “Computational complexity questions related to finite monoids and semigroups,” PhD Thesis, McGill University, Montréal (2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.University of PortoPortoPortugal
  2. 2.Ural State UniversityEkaterinburgRussia

Personalised recommendations