Advertisement

Journal of Mathematical Sciences

, Volume 156, Issue 2, pp 219–260 | Cite as

Burnside-type problems, theorems on height, and independence

  • A. Ya. BelovEmail author
Article

Abstract

This review paper is devoted to some questions related to investigations of bases in PI-algebras. The central point is generalization and refinement of the Shirshov height theorem, of the Amitsur–Shestakov hypothesis, and of the independence theorem. The paper is mainly inspired by the fact that these topics shed some light on the analogy between structure theory and constructive combinatorial reasoning related to the “microlevel,” to relations in algebras and straightforward calculations. Together with the representation theory of monomial algebras, height and independence theorems are closely connected with combinatorics of words and of normal forms, as well as with properties of primary algebras and with combinatorics of matrix units. Another aim of this paper is an attempt to create a kind of symbolic calculus of operators defined on records of transformations.

Keywords

Hilbert Series Minimal Dimension Minimal Image Monomial Algebra Kirillov Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Amitsur, “A generalization of Hilbert’s Nullstellensatz,” Proc. Amer. Math. Soc., 8, No. 4, 649–656 (1957).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Amitsur, “Rational identities and applications to algebra and geometry,” J. Algebra, 3, No. 3, 304–359 (1966).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    S. Amitsur, “The sequence of codimensions of PI-algebras,” Israel J. Math., 47, No. 1, 1–22 (1984).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    K. I. Beidar, V. N. Latyshev, V. T. Markov, A. V. Mikhalev, L. A. Skornyakov, and A. A. Tuganbaev, “Associative rings,” J. Sov. Math., 38, 1855–1929 (1987).zbMATHCrossRefGoogle Scholar
  5. 5.
    A. Ya. Belov, “On a Shirshov base with respect to free algebras of complexity n,” Mat. Sb., 135 (177), No. 3, 373–384 (1988).MathSciNetGoogle Scholar
  6. 6.
    A. Belov, “Some estimations for nilpotence of nil-algebras over a field of an arbitrary characteristics and height theorem,” Comm. Algebra, 20, No. 10, 2919–2922 (1992).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Belov, “About height theorem. Comm. Algebra, 23, No. 9, 3551–3553 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A.Ya. Belov, “The Nagata–Higman theorem for semirings,” Fundam. Prikl. Mat., 1, No. 2, 523–527 (1995).zbMATHMathSciNetGoogle Scholar
  9. 9.
    A. Belov, V. Borisenko, and V. Latyshev, “Monomial algebras,“ J. Math. Sci., 87, No. 3, 3463–3575 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Berele, “Homogeneous polynomial identities,” Israel J. Math., 42, No. 3, 258–272 (1982).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    L. A. Bokut’ and I. P. Shestakov, “Some results by A. I. Shirshov and his school,” in: Bokut’ L. A. (ed.) et al., Proc. Second Int. Conf. on Algebra Dedicated to the Memory of A. I. Shirshov, August 20–25, 1991, Barnaul, Russia,, Contemp. Math., Vol. 184, Amer. Math. Soc., Providence (1995), pp. 1–12.Google Scholar
  12. 12.
    A. Braun, “The radical in a finitely generated PI-algebra,” Bull. Amer. Math. Soc., 7, No. 2, 385–386 (1982).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    G. P. Chekanu, Locally Finite Algebras, Ph.D. Thesis, Kishinev (1982).Google Scholar
  14. 14.
    G. P. Chekanu, “On Shirshov’s height theorem,” in: Proc. of XIX All-Union Alg. Conf. I, L’vov (1987), p. 306.Google Scholar
  15. 15.
    G. P. Chekanu, “On local finiteness of algebras,” Mat. Issled., 105, 153–171 (1988).zbMATHMathSciNetGoogle Scholar
  16. 16.
    G. P. Chekanu, “Independence and quasiregularity in algebras,” in: Third Int. Conf. on Algebra Dedicated to the Memory of M. I. Kargapolov, Krasnoyarsk (1993).Google Scholar
  17. 17.
    G. P. Chekanu, “Independence and quasiregularity in algebras,” Dokl. Akad. Nauk, 337, No. 3, 316–319 (1994).Google Scholar
  18. 18.
    G. P. Chekanu, Independence and Local Finiteness, Doctor Habilitat Thesis, Kishinev (1995).Google Scholar
  19. 19.
    Dnestr Notebook, Inst. Mat. Sib. Otdel. Akad. Nauk SSSR, Novosibirsk (1993).Google Scholar
  20. 20.
    V. Drensky, “Codimensions of T-ideals and Hilbert series of relatively free algebras,” J. Algebra, 91, No. 1, 1–17 (1984).zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    V. Drensky, “On the Hilbert series of relatively free algebras,” Comm. Algebra, 12, No. 19, 2335–2347 (1984).zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    V. S. Drensky, Free Algebras and PI-Algebras, Springer Singapore, Singapore (2000).zbMATHGoogle Scholar
  23. 23.
    E. Formanek, P. W. Halpin, and C. W. Li, “The Poincare series of the ring of 2 × 2 generic matrices,” J. Algebra, 69, 105–112 (1981).zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    A. Giambruno and M. Zaicev, “Exponential codimension growth of PI algebras: An exact estimate,” Adv. Math., 142, 221–243 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    A. Giambruno and M. Zaicev, “Minimal varieties of algebras of exponential growth,” Electron. Res. Announc. Amer. Math. Soc., 6, 40–44 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    A. V. Grishin, “The growth exponent of a variety of algebras and its applications,” Algebra Logika, 28, No. 5, 536–557 (1987).MathSciNetGoogle Scholar
  27. 27.
    I. N. Herstein, Noncommutative rings, Carus Math. Monographs, No. 15, Math. Assoc. Amer. (1968).Google Scholar
  28. 28.
    A. R. Kemer, Nonmatrix Varieties, Varieties with Polynomial Growth, and Finitely Generated PI-Algebras, Ph.D. Thesis, Novosibirsk (1981).Google Scholar
  29. 29.
    A. R. Kemer, “Varieties and \( \mathbb{Z}\)2-graded algebras,” Izv. Akad. Nauk SSSR, Ser. Mat., 48, No. 5, 1042–1059 (1984).MathSciNetGoogle Scholar
  30. 30.
    A. T. Kolotov, “An upper estimate on the height of a finitely generated algebra with identical relations,” Sib. Mat. Zh., 23, No. 1, 187–189 (1982).zbMATHMathSciNetGoogle Scholar
  31. 31.
    A. I. Kostrikin, Around Burnside, Springer (1990).Google Scholar
  32. 32.
    The Kourovka Notebook (Unsolved Problems in Group Theory), Inst. Mat. Sib. Otdel. Akad. Nauk SSSR, Novosibirsk (1995).Google Scholar
  33. 33.
    A. G. Kurosh, “Problems of ring theory connected with the Burnside problem on periodic groups,” Izv. Akad. Nauk SSSR. Ser. Mat., 5, 233–240 (1941).Google Scholar
  34. 34.
    I. V. L’vov, “On Shirshov’s height theorem,” in: Fifth All-Union Sympos. Theory of Rings, Algebras, and Modules, Abstracts of Reports[in Russian], Inst. Mat. Sib. Otdel. Akad. Nauk SSSR, Novosibirsk (1982).Google Scholar
  35. 35.
    Yu. A. Medvedev, Nilradicals of Finitely Generated Jordan PI-Algebras [in Russian], Preprint No. 24, Inst. Mat. Sib. Otdel. Akad. Nauk SSSR, Novosibirsk (1985).Google Scholar
  36. 36.
    S. P. Mishchenko, “A variant of the height theorem for Lie algebras,” Math. Notes, 47, No. 4, 368–372 (1990).zbMATHMathSciNetGoogle Scholar
  37. 37.
    S. V. Pchelintsev, “The height theorem for alternate algebras,” Mat. Sb., 124, No. 4, 557–567 (1984).MathSciNetGoogle Scholar
  38. 38.
    C. Procesi, Rings with Polynomial Identities, Marcel Dekker, New York (1973).zbMATHGoogle Scholar
  39. 39.
    Yu. P. Razmyslov, “Algebras satisfying identity relations of Capelli type,” Izv. Akad. Nauk SSSR, Ser. Mat., 45, No. 1, 143–166 (1981).zbMATHMathSciNetGoogle Scholar
  40. 40.
    Yu. P. Razmyslov, Identities of Algebras and Their Representations [in Russian], Nauka, Moscow (1989).Google Scholar
  41. 41.
    L. H. Rowen, Polynomial Identities in Ring Theory, Pure Appl. Math., Vol. 84, Academic Press, New York (1980).Google Scholar
  42. 42.
    I. P. Shestakov, “Finitely generated special Jordan algebras and alternative PI-algebras,” Mat. Sb., 122, No. 1, 31–40 (1983).MathSciNetGoogle Scholar
  43. 43.
    A. I. Shirshov, “On some nonassociative nil-rings and algebraic algebras,” Mat. Sb., 41, No. 3, 381–394 (1957).MathSciNetGoogle Scholar
  44. 44.
    A. I. Shirshov, “On rings with identity relations,” Mat. Sb., 43, No. 2, 277–283 (1957).MathSciNetGoogle Scholar
  45. 45.
    V. G. Skosyrskii, Jordan Algebras with the Minimality Condition for Two-Sided Ideals [in Russian], Preprint No. 21, Inst. Mat. Sib. Otdel. Akad. Nauk SSSR, Novosibirsk (1985).Google Scholar
  46. 46.
    L. W. Small, “Localization in PI-rings,” J. Algebra, 19, No. 2, 181–183 (1971).MathSciNetGoogle Scholar
  47. 47.
    W. Specht, “Gesetze in Ringen,” Math. Z., 52, No. 5, 557–589 (1950).zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    V. A. Ufnarovskij, “An independence theorem and its consequences,” Mat. Sb., 128 (170), No. 1 (9), 124–132 (1985).Google Scholar
  49. 49.
    V. A. Ufnarovskij, “Combinatorial and asymptotic methods in algebra,” in: Progress in Science and Technology, Series on Contemporary Problems in Mathematics, Fundamental Directions, [in Russian], Vol. 57, All-Union Institute for Scientific and Technical Information, USSR Academy of Sciences, Moscow (1990), pp. 5–177.Google Scholar
  50. 50.
    E. I. Zel’manov, “Absolute zero-divisors and algebraic Jordan algebras,” Sib. Mat. Zh., 23, No. 6, 100–116 (1982).MathSciNetGoogle Scholar
  51. 51.
    K. A. Zhevlakov, A. M. Slin’ko, I. P. Shestakov, and A. I. Shirshov, Rings That Are Nearly Associative, Academic Press (1982).Google Scholar
  52. 52.
    K. A. Zubrilin, “Algebras satisfying Capelli identities,” Mat. Sb., 186, No. 3, 53–64 (1995).MathSciNetGoogle Scholar
  53. 53.
    K. A. Zubrilin, “On the class of nilpotency of obstruction to embeddability of algebras satisfying Capelli identities,” Fundam. Prikl. Mat., 1, No. 2, 409–430 (1995).zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Moscow Institute of Open EducationMoscowRussia
  2. 2.International University of BremenBremenRussia
  3. 3.Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations