Journal of Mathematical Sciences

, Volume 156, Issue 1, pp 187–208 | Cite as

Groups generated by 3-state automata over a 2-letter alphabet. II

  • I. Bondarenko
  • R. Grigorchuk
  • R. Kravchenko
  • Y. Muntyan
  • V. Nekrashevych
  • D. Savchuk
  • Z. Šunić
Article

Abstract

This is the second in a series of papers presenting results on the classification of groups generated by 3-state automata over a 2-letter alphabet. Among the examples treated here, one can find automata generating the free product of 3 cyclic groups of order 2, a virtually free abelian group of rank 3, a solvable group of derived length 3, some virtually torsion-free weakly branch groups, and other interesting self-similar groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Aleshin, “A free group of finite automata,” Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 4, 12–14 (1983).Google Scholar
  2. 2.
    L. Bartholdi and R. I. Grigorchuk, “On the spectrum of Hecke-type operators related to some fractal groups,” Tr. Mat. Inst. Steklova, 231, No. Din. Sist., Avtom. i Beskon. Gruppy, 5–45 (2000).MathSciNetGoogle Scholar
  3. 3.
    L. Bartholdi, R. I. Grigorchuk, and Z. Šunik, Branch Groups, Handbook of Algebra, 3, North-Holland, Amsterdam (2003), pp. 989–1112.Google Scholar
  4. 4.
    L. Bartholdi and Z. Šunik, “Some solvable automaton groups,” Top. Asympt. Aspects of Group Theory, Contemp. Math., 394, 11–29 (2006).Google Scholar
  5. 5.
    I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan, V. Nekrashevych, D. Savchuk, and Z. Šunić, “Groups generated by 3-state automata over a 2-letter alphabet, I” (2006). http://arxiv.org/abs/math.GR/0612178
  6. 6.
    I. Bondarenko and D. Savchuk, “On Sushchansky p-groups” (2006); http://arxiv.org/abs/math/0612200.
  7. 7.
    F. Dahmani, “An example of a non-contracting weakly branch automaton group,” Geometric Methods in Group Theory, Contemp. Math., 372, 219–224 (2005).Google Scholar
  8. 8.
    “The GAP group,” GAP-Groups, Algorithms, and Programming, Version 4.4.9 (2006).Google Scholar
  9. 9.
    Y. Glasner and Sh. Mozes, “Automata and square complexes,” Geom. Dedicata, 111, 43–64 (2005); http://arxiv.org/abs/math.GR/0306259.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskii, “Automata, dynamical systems, and groups,” Tr. Mat. Inst. Steklova, 231, No. Din. Sist., Avtom. i Beskon. Gruppy, 134–214 (2000).MathSciNetGoogle Scholar
  11. 11.
    R. I. Grigorchuk, “Branch groups,” Mat. Zametki, 67, No. 6, 852–858 (2000).MathSciNetGoogle Scholar
  12. 12.
    R. I. Grigorchuk and A. žuk, “On the asymptotic spectrum of random walks on infinite families of graphs,” in: Random Walks and Discrete Potential Theory, Cortona (1997), Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge (1999), pp. 188–204.Google Scholar
  13. 13.
    V. Nekrashevych, Self-similar Groups, Mathematical Surveys and Monographs, 117, Amer. Math. Soc., Providence, Rhode Island (2005).MATHGoogle Scholar
  14. 14.
    V. Nekrashevych and S. Sidki, “Automorphisms of the binary tree: State-closed subgroups and dynamics of 1/2-endomorphisms,” in: London Math. Soc. Lect. Note Ser., 311, Cambridge Univ. Press (2004), pp. 375–404.MathSciNetGoogle Scholar
  15. 15.
    M. Vorobets and Ya. Vorobets, “On a free group of transformations defined by an automaton,” To appear in Geom. Dedicata (2005); http://arxiv.org/abs/math/0601231.
  16. 16.
    M. Vorobets and Ya. Vorobets, “On a series of finite automata defining free transformation groups” (2006); http://arxiv.org/abs/math/0604328.

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • I. Bondarenko
    • 1
  • R. Grigorchuk
    • 1
  • R. Kravchenko
    • 1
  • Y. Muntyan
    • 1
  • V. Nekrashevych
    • 1
  • D. Savchuk
    • 1
  • Z. Šunić
    • 1
  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations