Advertisement

Nonclassical boundary-value problems. I

  • A. L. SkubachevskiiEmail author
Article

Keywords

Elliptic Problem Fredholm Operator Nonlocal Condition Nonlocal Problem Fredholm Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I,” Commun. Pure Appl. Math., 12, 623–727 (1959).zbMATHMathSciNetGoogle Scholar
  2. 2.
    M. S. Agranovich and M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type,” Uspekhi Mat. Nauk, 19, No. 3, 53–161 (1964); English transl.: Russian Math. Surveys, 19 (1964).zbMATHGoogle Scholar
  3. 3.
    W. G. Bade and R. S. Freeman, “Closed extensions of the Laplace operator determined by a general class of boundary conditions,” Pacific J. Math., 12, No. 2, 395–410 (1962).zbMATHMathSciNetGoogle Scholar
  4. 4.
    R. Beals, “Nonlocal elliptic boundary-value problems,” Bull. Amer. Math. Soc., 70, No. 5, 693–696 (1964).zbMATHMathSciNetGoogle Scholar
  5. 5.
    A. Bensoussan, “On the Hamilton-Jacobi approach for the optimal control of diffusion processes with jumps,” in: Stochastic Analysis (A. Freedman, M. Pinsky, Eds). Academic Press, New York, 25–55 (1978).Google Scholar
  6. 6.
    A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities, Gauthier-Villars, Bordas, Paris (1984).Google Scholar
  7. 7.
    O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Embedding Theorems. I, Wiley, New York (1978).Google Scholar
  8. 8.
    A. V. Bitsadze, “On the theory of nonlocal boundary-value problems,” Dokl. Akad. Nauk SSSR, 277, No. 1, 17–19 (1984); English transl.: Soviet Math. Dokl. 30 (1984).MathSciNetGoogle Scholar
  9. 9.
    A. V. Bitsadze, “On some class of conditionally solvable nonlocal boundary-value problems for harmonic functions,” Dokl. Akad. Nauk SSSR, 280, No. 3, 521–524 (1985); English transl.: Soviet Math. Dokl., 31 (1985).MathSciNetGoogle Scholar
  10. 10.
    A. V. Bitsadze and A. A. Samarskii, “On some simple generalization of linear elliptic boundary-value problems,” Dokl. Akad. Nauk SSSR, 185, No. 4, 739–740 (1969); English transl.: Soviet Math. Dokl., 10 (1969).MathSciNetGoogle Scholar
  11. 11.
    P. M. Blekher, “Operators depending meromorphically on a parameter,” Vestnik Moskov. Univ. Ser. I. Mat. Mekh., No. 5, 30–36 (1969); English transl.: Moscow Univ. Math. Bull., 24 (1969).Google Scholar
  12. 12.
    J. M. Bony, P. Courrege, and P. Priouret, “Semi groups de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum,” Ann. Inst. Fourier (Grenoble), 18, No. 2, 369–521 (1968).zbMATHMathSciNetGoogle Scholar
  13. 13.
    V. M. Borok and M. A. Perel'man, “On classes of uniqueness for solutions to multipoint boundary-value problem in infinite layer,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 8, 29–34 (1973); English transl.: Soviet Math. (Izv. VUZ), No. 8 (1973).Google Scholar
  14. 14.
    F. Browder, “Non-local elliptic boundary value problems,” Amer. J. Math., 86, No. 4. 735–750 (1964).zbMATHMathSciNetGoogle Scholar
  15. 15.
    F. Browder, “Asymptotic distributions of eigenvalues and eigenfunctions for non-local elliptic boundary value problems. I,” Amer. J. Math., 87, No. 1, 175–195 (1965).zbMATHMathSciNetGoogle Scholar
  16. 16.
    J. W. Calkin, “General self-adjoint boundary conditions for certain partial differential operators,” Proc. Natl. Acad. Sci. USA, 25, No. 4, 201–206 (1939).zbMATHGoogle Scholar
  17. 17.
    C. Cancelier, “Problèmes aux limites pseudo-différentiels donnant lieu au principe du maximum,” Comm. Partial Differential Equations, 11, 1677–1726 (1986).zbMATHMathSciNetGoogle Scholar
  18. 18.
    T. Carleman, “Sur la theorie des equations integrales et ses applications,” Verhandlungen des Internat. Math. Kongr., Zürich., 1, 138–151 (1932).Google Scholar
  19. 19.
    K. Cooke, L. E. Rossovskii, and A. L. Skubachevskii, “A boundary-value problem for a functional-differential equation with a linearly transformed argument,” Differ. Uravn., 31, No. 8, 1348–1352 (1995); English transl.: Differ. Equ., 31 (1995).MathSciNetGoogle Scholar
  20. 20.
    L. S. Darbinyan, “Solution of some functional equation in a class of analytic functions and their application” [in Russian], Erevansk. Gos. Univ. Uchen. Zap., 151, No. 3, 13–19 (1982).MathSciNetGoogle Scholar
  21. 21.
    A. A. Dezin, General Questions of the Theory of Boundary-Value Problems [in Russian], Nauka, Moscow (1980).zbMATHGoogle Scholar
  22. 22.
    N. Dunford and J. T. Schwartz, Linear Operators, Part. II: Spectral Theory, Interscience Publishers, New York-London (1963).zbMATHGoogle Scholar
  23. 23.
    W. Feller, “The parabolic differential equations and associated semi-groups of transformations,” Annal. Math., 55, No. 3, 468–518 (1952).MathSciNetGoogle Scholar
  24. 24.
    W. Feller, “Diffusion processes in one dimension,” Trans. Amer. Math. Soc., 77, No. 1, 1–31 (1954).zbMATHMathSciNetGoogle Scholar
  25. 25.
    R. S. Freeman, “Closed operators and their adjoints associated with elliptic differential operators,” Pacific J. Math., 22, No. 1, 71–97 (1967).zbMATHMathSciNetGoogle Scholar
  26. 26.
    E. I. Galakhov and A. L. Skubachevskii, “A nonlocal spectral problem,” Differ. Uravn., 33, No. 1, 25–32 (1997); English transl.: Differ. Equ., 33 (1997).MathSciNetGoogle Scholar
  27. 27.
    E. I. Galakhov and A. L. Skubachevskii, “On non-negative contractive semigroups with nonlocal conditions,” Mat. Sb., 189, No. 1, 45–78 (1998); English transl.: Sb. Math., 189 (1998).zbMATHMathSciNetGoogle Scholar
  28. 28.
    E. I. Galakhov and A. L. Skubachevskii, “On Feller semigroups generated by elliptic operators with integro-differential boundary conditions,” J. Differential Equations, 176, 315–355 (2001).zbMATHMathSciNetGoogle Scholar
  29. 29.
    M. G. Garroni and J. L. Menaldi, “Green's function and invariant density for an integro-differential operator of second order,” Ann. Mat. Pura. Appl. (4), 154, 147–222 (1989).zbMATHMathSciNetGoogle Scholar
  30. 30.
    L. Gårding, “Dirichlet's problem for linear elliptic partial differential equations,” Math. Scand., 1, 55–72 (1953).zbMATHMathSciNetGoogle Scholar
  31. 31.
    F. Gimpert and P. L. Lions, “Existence and regularity results for solutions of second-order elliptic integro-differential operators,” Ricerche Mat., 33, No. 2, 315–358 (1984).MathSciNetGoogle Scholar
  32. 32.
    I. C. Gohberg and E. I. Sigal, “An operator generalization of the logarithmic residue theorem and the theorem of Rouche,” Mat. Sb., 84(126), No. 4, 607–629 (1971); English transl.: Math. USSR Sb., 13 (1972).MathSciNetGoogle Scholar
  33. 33.
    G. Grubb, “A characterization of the non-local boundary value problems associated with elliptic operator,” Ann. Sc. Norm. Super. Pisa Cl. Sci. (3), 22, No. 3, 425–513 (1968).zbMATHMathSciNetGoogle Scholar
  34. 34.
    P. L. Gurevich, “Solvability of the boundary-value problem for some differential-difference equations,” Funct. Differ. Equ., 5, No. 1–2, 139–157 (1998).zbMATHMathSciNetGoogle Scholar
  35. 35.
    P. L. Gurevich, “Nonlocal elliptic problems in dihedral angles and the Green formula,” Dokl. Akad. Nauk, 379, No. 6, 735–738 (2001); English transl.: Russian Acad. Sci. Dokl. Math., 64, No. 1 (2001).MathSciNetGoogle Scholar
  36. 36.
    P. L. Gurevich, “Nonlocal problems for elliptic equations in dihedral angles and the Green formula,” Mitt. Math. Sem. Giessen, 247, 1–74 (2001).Google Scholar
  37. 37.
    P. L. Gurevich, “Asymptotics of solutions for nonlocal elliptic problems in plane angles,” Tr. Semin. im. I. G. Petrovskogo, 23, 93–126 (2003); English transl.: J. Math. Sci. (N.Y.), 120, No. 3 (2004).Google Scholar
  38. 38.
    P. L. Gurevich, “Nonlocal elliptic problems with nonlinear transformations of variables near conjugation points,” Izv. Ross. Akad. Nauk Ser. Mat., 67, No. 6, 71–110 (2003); English transl.: Izv. Math., 67, No. 6 (2003).MathSciNetGoogle Scholar
  39. 39.
    P. L. Gurevich, “Asymptotics of solutions for nonlocal elliptic problems in plane bounded domains,” Funct. Differ. Equ., 10, No. 1–2, 175–214 (2003).zbMATHMathSciNetGoogle Scholar
  40. 40.
    P. L. Gurevich, “Solvability of nonlocal elliptic problems in Sobolev spaces, I,” Russ. J. Math. Phys., 10, No. 4, 436–466 (2003).zbMATHMathSciNetGoogle Scholar
  41. 41.
    P. L. Gurevich, “Solvability of nonlocal elliptic problems in Sobolev spaces, II,” Russ. J. Math. Phys., 11, No. 1, 1–44 (2004).zbMATHMathSciNetGoogle Scholar
  42. 42.
    P. L. Gurevich, “Generalized solutions of nonlocal elliptic problems,” Mat. Zametki, 77, No. 5, 665–682 (2005); English transl.: Math. Notes, 77, No. 5–6 (2005).MathSciNetGoogle Scholar
  43. 43.
    P. L. Gurevich, “On stability of index for unbounded nonlocal operators in Sobolev spaces,” Tr. Mat. Inst. Steklova, 255, 116–135 (2006); English transl.: Proc. Steklov Inst. Math., 255 (2006)MathSciNetGoogle Scholar
  44. 44.
    P. L. Gurevich, “The consistency conditions and the smoothness of generalized solutions of nonlocal elliptic problems,” Adv. Differential Equations, 11, No. 3, 305–360 (2006).zbMATHMathSciNetGoogle Scholar
  45. 45.
    P. L. Gurevich and A. L. Skubachevskii, “On the Fredholm and unique solvability of nonlocal elliptic problems in multidimensional domains,” Tr. Moskov. Mat. Obs., 68, 288–373 (2007); English transl.: Trans. Moscow Math. Soc., 68 (2007).MathSciNetGoogle Scholar
  46. 46.
    A. K. Gushchin, “The compactness condition for a class of operators and its application to the investigation of the solvability of nonlocal problems for elliptic equations,” Mat. Sb., 193, No. 5, 17–36 (2002); English transl.: Sb. Math., 193, No. 5–6 (2003).MathSciNetGoogle Scholar
  47. 47.
    A. K. Gushchin and V. P. Mikhailov, “The Fredholmness of a class of nonlocal problems for a second-order elliptic equation,” Dokl. Akad. Nauk, 333, No. 3, 290–292 (1993); English transl.: Russian Acad. Sci. Dokl. Math., 48, No. 3 (1993).MathSciNetGoogle Scholar
  48. 48.
    A. K. Gushchin and V. P. Mikhailov, “On the solvability of nonlocal problems for a second-order elliptic equation,” Math. Sb., 185, No. 4, 121–160 (1994); English transl.: Sb. Math., 81 (1995).Google Scholar
  49. 49.
    V. A. Il'in, “The necessary and sufficient conditions for property of being a Riesz basis for root functions of discontinuous second order operator,” Differ. Uravn., 22, No. 12, 2059–2071 (1986); English transl.: Differ. Equ., 22 (1986).Google Scholar
  50. 50.
    V. A. Il'in and E. I. Moiseev, “An apriori bound for a solution of the problem conjugate to a non-local boundary-value problem of the first kind,” Differ. Uravn., 24, No. 5, 795–804 (1988); English transl.: Differ. Equ., 24 (1988).zbMATHGoogle Scholar
  51. 51.
    Y. Ishikawa, “A remark on the existence of a diffusion process with non-local boundary conditions,” J. Math. Soc. Japan, 42, No. 1. 171–184 (1990).zbMATHMathSciNetGoogle Scholar
  52. 52.
    A. G. Kamenskii, “Boundary-value problems for equations with formally symmetric differential-difference operators,” Differ. Uravn., 12, No. 5, 815–824 (1976); English transl.: Differ. Equ., 12 (1976).MathSciNetGoogle Scholar
  53. 53.
    G. A. Kamenskii and A. D. Myshkis, “On the formulation of boundary value problems for differential equations with deviating arguments and several highest terms,” Differ. Uravn., 10, No. 3, 409–418 (1974); English transl.: Differ. Equ., 10 (1974).zbMATHGoogle Scholar
  54. 54.
    G. A. Kamenskii, A. D. Myshkis, and A. L. Skubachevskii, “Smooth solutions of a boundary-value problem for a differential-difference equation of neutral type,” Ukrain. Mat. Zh., 37, No. 5, 581–589 (1985); English transl.: Ukrainian Math. J., 37 (1986).MathSciNetGoogle Scholar
  55. 55.
    L. I. Kamynin, “Uniqueness of solutions to boundary-value problems for second order elliptic differential equation with degeneration,” Differ. Uravn., 14, No. 1, 39–49 (1978); English transl.: Differ. Equ., 14 (1978).zbMATHMathSciNetGoogle Scholar
  56. 56.
    Yu. I. Karlovich, “On integral operators with shift of integration contour into domain,” Dokl. Akad. Nauk SSSR, 216, No. 1, 32–35 (1974).MathSciNetGoogle Scholar
  57. 57.
    Yu. I. Karlovich, “On singular integral operators with shift of the contour-support into domain” [in Russian], Tr. Tbilisskogo Matematicheskogo Instituta, 44, 113–124 (1974).zbMATHGoogle Scholar
  58. 58.
    Yu. I. Karlovich, V. G. Kravchenko, and G. S. Litvinchuk, “Noether's theory of singular integral operators with shift,” Izv. Vyssh. Uchebn. Zaved. Mat., 27, 3–27 (1983); English transl.: Soviet Math. (Izv. VUZ), 27 (1983).MathSciNetGoogle Scholar
  59. 59.
    T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin-Heideberg-New York (1966).zbMATHGoogle Scholar
  60. 60.
    K. Yu. Kishkis, “On some nonlocal problem for harmonic functions in multiply connected domain,” Differ. Uravn., 23, No. 1, 174–177 (1987); English transl.: Differ. Equ., 23 (1987).zbMATHMathSciNetGoogle Scholar
  61. 61.
    K. Yu. Kishkis, “The index of the Bitsadze-Samarskii problem for harmonic functions,” Differ. Uravn., 24, No. 1, 105–110 (1988); English transl.: Differ. Equ., 24 (1988).MathSciNetGoogle Scholar
  62. 62.
    K. Yu. Kishkis, “On the theory of nonlocal problems for the Laplace equation,” Differ. Uravn., 25, No. 1, 59–64 (1989); English transl.: Differ. Equ., 25 (1989).MathSciNetGoogle Scholar
  63. 63.
    V. A. Kondrat'ev, “Boundary-value problems for parabolic equations in closed domains,” Tr. Mosk. Mat. Obs., 15, 400–451 (1966); English transl.: Trans. Moscow Math. Soc., 15 (1966).zbMATHGoogle Scholar
  64. 64.
    V. A. Kondrat'ev, “Boundary-value problems for elliptic equations in domains with conical or angular points,” Tr. Mosk. Mat. Obs., 16, 209–292 (1967); English transl.: Trans. Moscow Math. Soc., 16 (1967).zbMATHGoogle Scholar
  65. 65.
    V. A. Kondrat'ev and O. A. Oleynik, “Boundary problems for partial differential equations in non-smooth domains,” Uspekhi Mat. Nauk, 38, No. 2, 3–76 (1983); English transl.: Russian Math. Surveys, 38 (1983).zbMATHMathSciNetGoogle Scholar
  66. 66.
    O. A. Kovaleva and A. L. Skubachevskii, “Nonlocal elliptic problems in the Sobolev spaces W lp(Q),” Dokl. Akad. Nauk, 366, No. 4, 449–451 (1999).zbMATHMathSciNetGoogle Scholar
  67. 67.
    O. A. Kovaleva and A. L. Skubachevskii, “Solvability of nonlocal elliptic problems in weight spaces,” Mat. Zametki, 67, No. 6, 882–898 (2000); English transl.: Math. Notes., 67 (2000).MathSciNetGoogle Scholar
  68. 68.
    A. M. Krall, “The development of general differential and general boundary systems,” Rocky Mountain J. Math., 5, No. 4, 493–542 (1975).zbMATHMathSciNetCrossRefGoogle Scholar
  69. 69.
    S. G. Krein, Linear Equations in Banach Spaces, Birkhäuser, Boston (1982).zbMATHGoogle Scholar
  70. 70.
    A. A. Lacey, “Thermal runaway in nonlocal problem modeling Ohmic heating, I: Model derivation and some special cases,” Eur. J. Appl. Math., 6, 127–144 (1995).zbMATHMathSciNetGoogle Scholar
  71. 71.
    A. A. Lacey, “Thermal runaway in nonlocal problem modeling Ohmic heating, II: General proof of blow-up and asymptotics of runaway,” Eur. J. Appl. Math., 6, 201–224 (1995).zbMATHMathSciNetGoogle Scholar
  72. 72.
    O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Acad. Press., New York-London (1968).zbMATHGoogle Scholar
  73. 73.
    S. Lenhart, “Integro-differential operators associated with diffusion process with jumps,” Appl. Math. Optim., 9, 177–191 (1982).zbMATHMathSciNetGoogle Scholar
  74. 74.
    J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Springer, New York-Heidelberg-Berlin (1972).Google Scholar
  75. 75.
    V. G. Maz'ya and B. A. Plamenevskii, “L p-estimates of solutions of elliptic boundary-value problems in domains with edges,” Tr. Mosk. Mat. Obs., 37, 49–93 (1978); English transl.: Trans. Moscow Math. Soc., 37 (1980).zbMATHMathSciNetGoogle Scholar
  76. 76.
    C. Miranda, Equazioni alle Derivate Parziali di Tipo Ellittico, Springer, Berlin-Göttingen-Heidelberg (1955).zbMATHGoogle Scholar
  77. 77.
    E. Mitidieri and S. I. Pohozaev, “Liouville-type theorems for certain nonlinear nonlocal problems,” Dokl. Akad. Nauk, 399, No. 6, 732–736 (2004); English transl.: Russian Acad. Sci. Dokl. Math., 70, No. 3 (2004)MathSciNetGoogle Scholar
  78. 78.
    E. I. Moiseev, “On the basis property of eigenfunctions for some nonlocal boundary-value problem,” Dokl. Akad. Nauk SSSR, 313, No. 3, 556–559 (1990); English transl.: Soviet Math. Dokl (1990).Google Scholar
  79. 79.
    E. I. Moiseev, “Spectral problems of nonlocal boundary-value problems,” Differ. Uravn., 30, No. 4, 797–805 (1994); English transl.: Differ. Equ., 30 (1994).zbMATHMathSciNetGoogle Scholar
  80. 80.
    N. I. Muskhelishvili, Singular Integral Equations [in Russian], Fizmatgiz, Moscow (1962).zbMATHGoogle Scholar
  81. 81.
    M. A. Mustafin, “On the Abel method of summability for series with respect to root vectors of nonlocal elliptic problems,” Differ. Uravn., 26, No. 1, 167–168 (1990); English transl.: Differ. Equ., 26 (1990).zbMATHMathSciNetGoogle Scholar
  82. 82.
    S. A. Nazarov and B. A. Plamenevskii, Elliptic Problems in Domains with Piecewise Smooth Boundaries [in Russian], Nauka, Moscow (1991).Google Scholar
  83. 83.
    G. G. Onanov and A. L. Skubachevskii, “Differential equations with deviating arguments in stationary problems in the mechanics of a deformed body,” Prikl. Mekh., 15, No. 5, 39–47 (1979); English transl.: Soviet Applied Mech., 15 (1979).MathSciNetGoogle Scholar
  84. 84.
    G. G. Onanov and E. L. Tsvetkov, “On the minimum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theorem,” Russ. J. Math. Phys., 3, No. 4, 491–500 (1996).MathSciNetGoogle Scholar
  85. 85.
    B. P. Paneyakh, “Some nonlocal boundary value problems for linear differential operators,” Mat. Zametki, 35, No. 3, 425–434 (1984); English transl.: Math. Notes, 35 (1984).MathSciNetGoogle Scholar
  86. 86.
    M. Picone, “I teoremi d'esistenza per gl'integrale di una equazione differenziale lineare ordinaria soddisfacenti ad uns nuova classe di condizioni,” Rend. Acc. Lincei., 17, 340–347 (1908).Google Scholar
  87. 87.
    M. Picone, “Equazione integrale traducente il piu generale problema lineare per le equation differentiali lineari ordinarie di qualsivoglia ordine,” Accad. Naz. dei Lincei. Atti dei Convegni. Roma, 15, No. 6, 942–948 (1932).zbMATHGoogle Scholar
  88. 88.
    V. V. Pod'yapol'skii, “The Abel summability of system of root functions for some nonlocal problem with integral conditions,” Mat. Zametki, 65, No. 5, 797–800 (1999); English transl.: Math. Notes, 65 (1999).MathSciNetGoogle Scholar
  89. 89.
    V. V. Pod'yapol'skii and A. L. Skubachevskii, “The spectral asymptotics of strongly elliptic differential-difference operators,” Differ. Uravn., 35, No. 6, 793–800 (1999); English transl.: Differ. Equ., 35 (1999).MathSciNetGoogle Scholar
  90. 90.
    Ya. A. Roitberg and Z. G. Sheftel', “On a class of general nonlocal elliptic problems,” Dokl. Akad. Nauk SSSR, 192, No. 3, 511–513 (1970); English transl.: Soviet Math. Dokl., 11 (1970).MathSciNetGoogle Scholar
  91. 91.
    Ya. A. Roitberg and Z. G. Sheftel, “Nonlocal problems for elliptic equations and systems,” Sibirsk. Mat. Zh., 13, No. 1, 165–181 (1972). English transl.: Siberian Math. J., 13 (1972).Google Scholar
  92. 92.
    L. E. Rossovskii, “On boundary-value problems for a class of functional differential equations,” Nonlinear Anal., 49, 799–816 (2002).zbMATHMathSciNetGoogle Scholar
  93. 93.
    A. A. Samarskii, “Some problems of the theory of differential equations,” Differ. Uravn., 16, No. 11, 1925–1935 (1980); English transl.: Differ. Equ., 16 (1980).MathSciNetGoogle Scholar
  94. 94.
    K. Sato and T. Ueno, “Multidimensional diffusion and the Markov process on the boundary,” J. Math. Kyoto Univ., 4, No. 3, 529–605 (1965).zbMATHMathSciNetGoogle Scholar
  95. 95.
    M. Schechter, “Nonlocal elliptic boundary value problems,” Ann. Sc. Norm. Super. Pisa Cl. Sci. (3), 20, No. 2, 421–441 (1966).zbMATHMathSciNetGoogle Scholar
  96. 96.
    Yu. G. Sentsov, “On the Riesz basis property of a system of eigen-and associated functions for a differential operator with integral conditions,” Mat. Zametki, 65, No. 6, 948–952 (1999); English transl.: Math. Notes, 65 (1999).MathSciNetGoogle Scholar
  97. 97.
    A. A. Shkalikov, “Basis property of eigenfunctions of ordinary differential operators with integral boundary conditions,” Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 6, 12–21 (1982); English transl.: Moscow Univ. Math. Bull., 37, No. 6 (1982).Google Scholar
  98. 98.
    Yu. T. Sil'chenko, “Eigenvalues and eigenfunctions of differential operator with nonlocal boundary conditions,” Differ. Uravn., 42, No. 6, 764–768 (2006); English transl.: Differ. Equ., 42 (2006).MathSciNetGoogle Scholar
  99. 99.
    A. L. Skubachevskii, “Some nonlocal elliptic boundary-value problems,” Differ. Uravn., 18, No. 9, 1590–1599 (1982); English transl.: Differ. Equ., 18 (1982).MathSciNetGoogle Scholar
  100. 100.
    A. L. Skubachevskii, “Nonlocal elliptic boundary-value problems with degeneration,” Differ. Uravn., 19, No. 3, 457–470 (1983); English transl.: Differ. Equ., 19 (1983).MathSciNetGoogle Scholar
  101. 101.
    A. L. Skubachevskii, “Nonlocal elliptic problems with a parameter,” Mat. Sb., 121(163), No. 6, 201–210 (1983); English transl.: Math. USSR Sb., 49 (1984).MathSciNetGoogle Scholar
  102. 102.
    A. L. Skubachevskii, “The elliptic problems of A. V. Bitsadze and A. A. Samarskii,” Dokl. Akad. Nauk SSSR, 278, No. 4, 813–816 (1984): English transl.: Soviet Math. Dokl., 30 (1984).MathSciNetGoogle Scholar
  103. 103.
    A. L. Skubachevskii, “Solvability of elliptic problems with boundary conditions of Bitsadze-Samarskii type,” Differ. Uravn., 21, No. 4, 701–706 (1985); English transl.: Differ. Equ., 21 (1985).MathSciNetGoogle Scholar
  104. 104.
    A. L. Skubachevskii, “Elliptic problems with nonlocal conditions near the boundary,” Mat. Sb., 129(171), No. 2, 279–302 (1986); English transl.: Math. USSR Sb., 57 (1987).MathSciNetGoogle Scholar
  105. 105.
    A. L. Skubachevskii, “Solvability of elliptic problems wilh nonlocal boundary conditions,” Dokl. Akad. Nauk SSSR, 291, No. 3, 551–555 (1986): English transl.: Soviet Math. Dokl., 34 (1987).MathSciNetGoogle Scholar
  106. 106.
    A. L. Skubachevskii, “Eigenvalues and eigenfunctions of some nonlocal boundary-value problems,” Differ. Uravn., 25, No. 1, 127–136 (1989); English transl.: Differ. Equ., 25 (1989).MathSciNetGoogle Scholar
  107. 107.
    A. L. Skubachevskii, “On some problems for multidimensional diffusion processes,” Dokl. Akad. Nauk SSSR, 307, No. 2, 287–291 (1989); English transl.: Soviet Math. Dokl., 40 (1990).Google Scholar
  108. 108.
    A. L. Skubachevskii, “Model nonlocal problems for elliptic equations in dihedral angles,” Differ. Uravn., 26, No. 1, 120–131 (1990); English transl.: Differ. Equ., 26 (1990).MathSciNetGoogle Scholar
  109. 109.
    A. L. Skubachevskii, “Truncation-function method in the theory of nonlocal problems,” Differ. Uravn., 27, No. 1, 128–139 (1991); English transl.: Differ. Equ., 27 (1991).MathSciNetGoogle Scholar
  110. 110.
    A. L. Skubachevskii, “On the stability of index of nonlocal elliptic problems,” J. Math. Anal. Appl., 160, No. 2, 323–341 (1991).zbMATHMathSciNetGoogle Scholar
  111. 111.
    A. L. Skubachevskii, “Boundary-value problems for differential-difference equations with incommensurable shifts,” Dokl. Akad. Nauk, 324, No. 6, 1155–1158 (1992): English transl.: Russian Acad. Sci. Dokl. Math., 45 (1992).MathSciNetGoogle Scholar
  112. 112.
    A. L. Skubachevskii, “On the Feller semigroups for multidimensional diffusion processes,” Dokl. Akad. Nauk, 341, No. 2, 173–176 (1995): English transl.: Russian Acad. Sci. Dokl. Math., 51 (1995).MathSciNetGoogle Scholar
  113. 113.
    A. L. Skubachevskii, “Nonlocal elliptic problems and multidimensional diffusion processes,” Russ. J. Math. Phys., 3, No. 3, 327–360 (1995).MathSciNetGoogle Scholar
  114. 114.
    A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel-Boston-Berlin (1997).zbMATHGoogle Scholar
  115. 115.
    A. L. Skubachevskii, “Regularity of solutions for some nonlocal elliptic problem,” Russ. J. Math. Phys., 8, No. 3, 365–374 (2001).zbMATHMathSciNetGoogle Scholar
  116. 116.
    A. L. Skubachevskii, “Nonlocal boundary-value problems for elliptic systems in angles,” Tr. Semin. im. I. G. Petrovskogo, 22, 283–298 (2002); English transl.: J. Math. Sci. (N. Y.), 114, No. 4 (2003).Google Scholar
  117. 117.
    A. L. Skubachevskii, “On the solvability of nonlocal problems for elliptic systems in infinite angles,” Dokl. Akad. Nauk, 412, No. 3, 317–320 (2007).MathSciNetGoogle Scholar
  118. 118.
    A. L. Skubachevskii and G. M. Steblov, “On the spectrum of differential operators with domain nondense in L 2(0, 1),” Dokl. Akad. Nauk SSSR, 321, No. 6, 1158–1163 (1991); English transl.: Soviet Math. Dokl., 44 (1992).Google Scholar
  119. 119.
    L. N. Slobodetskii, “Generalized Sobolev spaces and their application to boundary problems for partial differential equations,” Leningrad. Gos. Ped. Inst. Uchen. Zap., 197, 54–112 (1958); English transl.: Amer. Math. Soc. Transl. Ser. 2, 57 (1966).Google Scholar
  120. 120.
    S. L. Sobolev, Application of Functional Analysis in Mathematical Physics, AMS, Providence, (1963).Google Scholar
  121. 121.
    A. P. Soldatov, “The Bitsadze-Samarskii problem for functions analytic in the sense of Douglis,” Differ. Uravn., 41, No. 3, 396–407 (2005); English transl.: Differ. Equ., 41 (2005).MathSciNetGoogle Scholar
  122. 122.
    V. A. Solonnikov, “General boundary value problems for systems elliptic in the sense of A. Douglis and L. Nirenberg,” Trudy Mat. Inst. Steklova, 92, 233–297 (1966).MathSciNetGoogle Scholar
  123. 123.
    A. Sommerfeld, “Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flussigkeitsbewegungen,” Atti del IV Congr. Intern dei Matem. Rome, 3, 116–124 (1909).Google Scholar
  124. 124.
    B. Yu. Sternin and B. E. Shatalov, “Extension of algebra of pseudodifferential operators and some nonlocal elliptic problems,” Mat. Sb., 185, No. 3, 117–160 (1994); English transl.: Sb. Math., 81, No. 2 (1995).Google Scholar
  125. 125.
    K. Taira, Diffusion Processes and Partial Differential Equations, London, Academic Press (1988).zbMATHGoogle Scholar
  126. 126.
    K. Taira, “On the existence of Feller semigroups with boundary conditions,” Mem. Amer. Math. Soc., 99, No. 475, 1–65 (1992).MathSciNetGoogle Scholar
  127. 127.
    Ya. D. Tamarkin, Some General Problems of the Theory of Ordinary Linear Differential Equations and Expansion of an Arbitrary Function in Series of Fundamental Functions, Petrograd (1917); abridged English transl.: Math. Z., 27 (1927/1928).Google Scholar
  128. 128.
    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin (1978).Google Scholar
  129. 129.
    A. D. Ventsel', “On boundary conditions for multidimensional diffusion processes,” Teor. Veroyatn. Primen., 14, No. 2, 172–185 (1959).Google Scholar
  130. 130.
    M. I. Vishik, “On strongly elliptic systems of differential equations” [in Russian], Mat. Sb., 29(71), No. 3, 615–676 (1951).Google Scholar
  131. 131.
    M. I. Vishik, “On general boundary value problems for elliptic differential equations” [in Russian], Tr. Mosk. Mat. Obs., 1, 187–246 (1952).zbMATHGoogle Scholar
  132. 132.
    L. R. Volevich, “Solvability of boundary-value problems for general elliptic systems” [in Russian], Mat. Sb., 68, No. 3, 373–416 (1965).MathSciNetGoogle Scholar
  133. 133.
    K. Yosida, Functional Analysis, Springer, Berlin-Heidelberg-New York (1971).zbMATHGoogle Scholar
  134. 134.
    N. V. Zhitarashu and S. D. Eidel'man, “On nonlocal boundary-value problems for elliptic equations” [in Russian], Mat. Issled. Kishinev, 6, No. 2, 63–73 (1971).zbMATHGoogle Scholar
  135. 135.
    N. A. Zhura, “Boundary value problems of Bitsadze-Samarskii type for systems that are elliptic in the Douglis-Nirenberg sense,” Differ. Uravn., 28, No. 1, 81–91 (1992); English transl.: Differ. Equ., 28 (1992).zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.People’s Friendship University of RussiaMoscowRussia

Personalised recommendations