Journal of Mathematical Sciences

, Volume 155, Issue 1, pp 81–88

On uniformly convergent rearrangements of trigonometric Fourier series

  • S. V. Konyagin
Article

Abstract

We show that if the module of continuity ω(ƒ, δ) of a 2π-periodic function ƒ ∈ {ie081-01} is o(1/ log log 1/δ) as δ → 0+, then there exists a rearrangement of the trigonometric Fourier series of ƒ converging uniformly to ƒ.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Chobanian, “The structure of the set of sums of a conditionally convergent series in a normed space,” Dokl Akad. Nauk SSSR, 278, No. 3, 556–559 (1984).MathSciNetGoogle Scholar
  2. 2.
    S. A. Chobanian, “The structure of the set of sums of a conditionally convergent series in a normed space,” Mat. Sb., 128, No. 1, 50–65 (1985).MathSciNetGoogle Scholar
  3. 3.
    J.-P. Kahane, Random Functional Series [Russian translation], Mir, Moscow (1973).Google Scholar
  4. 4.
    S. V. Konyagin, “On rearrangements of trigonometric Fourier series,” in All-Union school “Theory of Function Approximations,” Kiev (1989), p. 80.Google Scholar
  5. 5.
    K. Prachar, Distribution of Prime Numbers, [Russian translation], Mir, Moscow (1967).Google Scholar
  6. 6.
    S. G. Révész, “Rearrangements of Fourier series,” J. Approx. Theory., 60, No. 1, 101–121 (1990).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. G. Révész, “On the convergence of Fourier series of U.A.P functions,” J. Math. Anal. Appl., 151, No. 2, 308–317 (1990).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    P. L. Ulianov, “Problems on the trigonometric series theory,” Usp. Mat. Nauk, 19, No. 1, 3–69 (1964).Google Scholar
  9. 9.
    V. V. Zhuk, Approximations of Periodic Functions [in Russian], Leningrad (1982).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • S. V. Konyagin
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations