Advertisement

Journal of Mathematical Sciences

, Volume 153, Issue 2, pp 197–209 | Cite as

Quantum computation with scattering matrices

Article
  • 24 Downloads

Abstract

We discuss possible applications of the 1D direct and inverse scattering problem to the design of universal quantum gates for quantum computation. The potentials generating some universal gates are described.

Keywords

Quantum Computation Quantum Gate Monodromy Matrix Hadamard Matrix Fuchsian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold, Complementary Chapters of Differential Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  2. 2.
    J. L. Brylinski and R. Brylinski, Universal Quantum Gates, Chapman and Hall/CRC Press, Boca Ratton, Florida (2002).Google Scholar
  3. 3.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka (1979).Google Scholar
  4. 4.
    L. D. Faddeev and O. A. Yakubovski, Lectures in Quantum Mechanics [in Russian], Leningrad (1980).Google Scholar
  5. 5.
    L. D. Faddeev and L. A. Takhtajan, Hamilton Approuch to the Theory of Solitons [in Russian], Nauka (1986).Google Scholar
  6. 6.
    G. Giorgadze, “Monodromic approach to quantum computing,” Int. J. Mod. Phys., B16, No. 30, 4593–4605 (2002).Google Scholar
  7. 7.
    G. Giorgadze and G. Khimshiashvili, “On Schrödinger equations of Okubo type,” J. Dynam. Control Systems, 10, No. 2, 171–186 (2004).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    L. H. Kauffman and S. J. Lomonaco, “Quantum entanglement and topological entanglement,” New J. Phys., 4, No. 73, 1–73 (2002).MathSciNetGoogle Scholar
  9. 9.
    V. Kostrykin and R. Schrader, Kirchhoff’s rule for quantum wires. II. The Inverse Problem with Possible Applications to Quantum Computers, ArXiv: quant-ph/99/0053.Google Scholar
  10. 10.
    C. Lee and E. A. Ostrovskaya, Quantum computation with diatomic bits in optical lattices, ArXiv: quant-ph/0502154.Google Scholar
  11. 11.
    M. Masalas and M. Flischauer, Scattering of dark-state polaritons in optical lattices and quantum phase gates for photons, ArXiv: quant-ph/0402142.Google Scholar
  12. 12.
    A. C. Newell, Solitons in Mathematical Physics, SIAM (1989).Google Scholar
  13. 13.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics. Vol. 3. Scattering Theory, Academic Press, New York (1979).Google Scholar
  14. 14.
    P. Zanardi and M. Rasetti, “Holonomic quantum computation,” Phys. Lett., A264, 94 (1999).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Institute of CyberneticsGeorgian Academy of SciencesTbilisiGeorgia

Personalised recommendations