Journal of Mathematical Sciences

, Volume 151, Issue 6, pp 3473–3496 | Cite as

Superconductivity of plasma and fireballs

  • M. I. ZelikinEmail author


Spherical Harmonic Beltrami Operator Geometrical Quantization Elementary Wave Tangent Circle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Arsenjev, Dokl. AN USSR, 305, No. 2 (1989).Google Scholar
  2. 2.
    F. A. Berezin, “Quantization,” Math. USSR Izv., 8, 1109–1165 (1974).zbMATHCrossRefGoogle Scholar
  3. 3.
    A. Besse, Manifolds All of Whose Geodesics Are Closed, Springer-Verlag, Berlin-Heidelberg-New York (1978).zbMATHGoogle Scholar
  4. 4.
    H. A. Bethe, Intermediate Quantum Mechanics, Benjamin, New York-Amsterdam (1964).Google Scholar
  5. 5.
    H. A. Bethe, Theory of Nuclear Matter, Annual review of nuclear science, 21, Palo Alto, California (1971).Google Scholar
  6. 6.
    N. N. Bogoljubov and N. N. Bogoljubov (Jr.), Introduction to Quantum Statistical Mechanics [in Russian], Nauka, Moscow (1984).Google Scholar
  7. 7.
    S. Weinberg, The Quantum Theory of Fields, Cambridge Univ. Press (2000).Google Scholar
  8. 8.
    A. A. Vlasov, Theory of Many Particles [in Russian], GITTL, Moscow-Leningrad (1950).Google Scholar
  9. 9.
    A. Gurevich and K. Zybin, “Runaway breakdown and the mysteries of lightning,” Phys. Today, 5, 37–43 (2005).CrossRefGoogle Scholar
  10. 10.
    J. R. Dwyer et al, Geophys. Res. Lett., 32, L01803 (2005).CrossRefGoogle Scholar
  11. 11.
    A. I. Egorov, S. I. Stepanov, and G. D. Shabanov, “Creation of fireballs on a laboratory scale,” Usp. Fiz. Nauk, 174, No. 1, 107–109.Google Scholar
  12. 12.
    B. B. Kadomtzev, Collective Phenomena in Plasma [in Russian], Nauka, Moscow (1976).Google Scholar
  13. 13.
    P. L. Kapitza, Experiment. Theory. Practice [in Russian], Nauka, Moscow (1977).Google Scholar
  14. 14.
    A. A. Kirillov, “Infinite-dimensional Lie groups, their orbits, invariants, and representations,” Lect. Notes Math., 970, 101–123.Google Scholar
  15. 15.
    B. Kostant, Quantization and Unitary Representations, Lect. Notes Math., 170, Springer-Verlag, Berlin (1970).Google Scholar
  16. 16.
    M. Kummer, Commun. Math.Phys., 84, 133 (1982).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    G. M. Collins, P. M. Celliers, L. B. Da Silva, R. Caube, D. M. Gold, M. E. Foord, N. C. Holmes, B. A. Hammel, and R. J. Wallace, “Temperature measurements of shock compressed liquid deuterium up to 230 GPa, ” Phys. Rev. Lett., 87, No. 16 (2001).Google Scholar
  18. 18.
    J. Neuman, “Über Functionen von Functionaloperatoren,” Ann. Math., 32, 191–226 (1931).CrossRefGoogle Scholar
  19. 19.
    J. H. Rawnsley, “Coherent states and Kähler manifolds,” Quart. J. Math., 28, 404–415 (1997).Google Scholar
  20. 20.
    I. E. Segal, “Quantization of nonlinear systems,” J. Math. Phys., 1, 468–488 (1960).zbMATHCrossRefGoogle Scholar
  21. 21.
    J.-P. Souriau, “Structure of dynamical systems. A symplectic viewpoint,” Prog. Math., 49, Birkhäuser, Boston (1997).Google Scholar
  22. 22.
    J.-P. Souriau, “Interpretation geometrique des etats quantiques,” Lect. Notes Math., 570, 76–96 (1975).CrossRefMathSciNetGoogle Scholar
  23. 23.
    I. P. Stachanov, On the Physical Nature of Fireballs [in Russian], Nauchnyj Mir, Moscow (1996).Google Scholar
  24. 24.
    B. Sutherland, “Exact results for a quantum many-body problem in one dimension,” Phys. Rev. A., 4, 2019–2021 (1971).CrossRefGoogle Scholar
  25. 25.
    A. N. Tyurin, Quantization, Classical and Quantum Theory of Fields, and Theta-Functions [in Russion], Moscow-Izhevsk (2003).Google Scholar
  26. 26.
    D. R. Hartree, The Calculation of Atomic Structure, J. Wiley and Sons, New York, Chapman and Hall, London (1957).Google Scholar
  27. 27.
    N. Hitchin, “Flat connections and geometrical quantization,” Commun. Math. Phys., 131, 347–380 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    L. Schiff, Quantum Mechanics, McGraw-Hill, New York-Toronto-London (1955).zbMATHGoogle Scholar
  29. 29.
    V. V. Schmidt, Introduction to Physics of Superconductors [in Russian], Moscow (2000).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations