Advertisement

Journal of Mathematical Sciences

, Volume 151, Issue 4, pp 3245–3253 | Cite as

On the variational integrating matrix for hyperbolic systems

  • S. Ya. StartsevEmail author
Article

Abstract

We obtain a necessary and sufficient condition for a hyperbolic system to be an Euler-Lagrange system with a first-order Lagrangian up to multiplication by some matrix. If this condition is satisfied and an integral of the system is known to us, then we can construct a family of higher symmetries that depend on an arbitrary function. Also, we consider the systems that satisfy the above criterion and that possess a sequence of the generalized Laplace invariants with respect to one of the characteristics; then we prove that the generalized Laplace invariants with respect to the other characteristic are uniquely defined.

Keywords

Vector Function Hyperbolic System Total Derivative Variational Derivative Lagrange System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Anderson and T. Dutchamp, “On the existence of global variational principles,” Amer. J. Math., 102, 781–868 (1980).zbMATHCrossRefGoogle Scholar
  2. 2.
    I. M. Anderson and N. Kamran, The variational bicomplex for second order scalar partial differential equations in the plane, Preprint, Centre de Recherches Mathematiques, Universite de Montreal (1994).Google Scholar
  3. 3.
    G. Darboux, Leçons sur la théorie générale des surfaces et les applications geometriques du calcul infinitesimal, Vol. 2, Gauthier-Villars, Paris (1915).Google Scholar
  4. 4.
    D. K. Demskoi, “One class of Liouville-type systems,” Teor. Mat. Fiz., 141, No. 2, 1509–1527 (2004).Google Scholar
  5. 5.
    D. K. Demskoi and S. Ya. Startsev, “On construction of symmetries from integrals of hyperbolic partial differential systems,” Fundam. Prikl. Mat., 10, No. 1, 29–37 (2004).zbMATHGoogle Scholar
  6. 6.
    E. V. Ferapontov, “Laplace transformations of hydrodynamic-type systems in Riemann invariants,” Teor. Mat. Fiz., 110, No. 1, 68–77 (1997).zbMATHMathSciNetGoogle Scholar
  7. 7.
    E. Goursat, Leçons sur l’intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes, Vols. 1, 2, Hermann, Paris (1896, 1898).Google Scholar
  8. 8.
    A. M. Guryeva and A. V. Zhiber, “Laplace invariants of two-dimensional open Toda lattices,” Teor. Mat. Fiz., 138, No. 3, 338–355 (2004).Google Scholar
  9. 9.
    A. V. Kiselev, “On conservation laws for the Toda equations,” Acta Appl. Math., 83, Nos. 1–2, 175–182 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York (1986).zbMATHGoogle Scholar
  11. 11.
    V. V. Sokolov and A. V. Zhiber, “Exactly integrable hyperbolic equations of Liouville type,” Rus. Math. Surv., 56, No. 1, 61–101 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Ya. Startsev, “Hyperbolic equations admitting differential substitutions,” Teor. Mat. Fiz., 127, No. 1, 460–470 (2001).zbMATHMathSciNetGoogle Scholar
  13. 13.
    F. G. Tricomi, Lezioni sulle equazioni a derivate parziali, Editrice Gheroni, Torino (1954).zbMATHGoogle Scholar
  14. 14.
    S. P. Tsarev, “Factoring linear partial differential operators and the Darboux method for integrating nonlinear partial differential equations,” Teor. Mat. Fiz., 122, No. 1, 121–133 (2000).MathSciNetGoogle Scholar
  15. 15.
    V. Volterra, Leçons sur les Fonctions de Lignes, Gauthier-Villars, Paris (1913).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Institute for Mathematics UNCRASMoscowRussia

Personalised recommendations