Journal of Mathematical Sciences

, Volume 151, Issue 4, pp 3167–3181 | Cite as

On symmetry classification of third-order evolutionary systems of divergent type

  • A. G. MeshkovEmail author


A symmetry classification is presented for integrable two-field third-order evolutionary systems of divergent type. The list contains thirteen exactly integrable systems. For eleven of them, differential substitutions that relate the systems with the known systems by Drinfeld-Sokolov, Ito, and Hirota-Satsuma are found. The two remaining systems seem to be new.


Integrable System Integrability Condition Formal Power Series Symmetry Approach Jordan Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Adler, A. B. Shabat, and R. I. Yamilov, “Symmetry approch to the problem of integrability,” Teor. Mat. Fiz., 125, No 3, 355–426 (2000).MathSciNetGoogle Scholar
  2. 2.
    M. Yu. Balakhnev, “On one class of integrable evolutionary vector equations,” Teor. Mat. Fiz., 142, No. 1, 13–20 (2005).MathSciNetGoogle Scholar
  3. 3.
    H. H. Chen, Y. C. Lee, and C. S. Liu, Phys. Scr., 20, Nos. 3–4, 490–492 (1979).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V. G. Drinfeld and V. V. Sokolov, “New evolution equations that admit LA pairs,” in: Tr. semin. S. L. Soboleva, 2, Novosibirsk (1981), pp. 5–9.MathSciNetGoogle Scholar
  5. 5.
    V. G. Drinfeld and V. V. Sokolov, “Lie algebras and KdV-type equations,” in: Itogi Nauki Tekh. Sovr. Probl. Mat., 24, VINITI, Moscow (1984), pp. 81–180.Google Scholar
  6. 6.
    B. Fuchssteiner and A. S. Fokas, “Symplectic structures, their Bäcklund transformations and hereditary symmetries,” Physica, D4, No. 1, 47–66 (1981).MathSciNetGoogle Scholar
  7. 7.
    R. Hirota and J. Satsuma, “Soliton solutions of a coupled Korteweg-de Vries equation,” Phys. Lett., A85, No. 8, 407–408 (1981).MathSciNetGoogle Scholar
  8. 8.
    M. Ito, “Symmetries and conservation laws of a coupled nonlinear wave equation,” Phys. Lett., A91, 335–338 (1982).Google Scholar
  9. 9.
    I. V. Kulemin and M. Yu. Balakhnev, “Differential substitutions for evolution systems of third order,” Differ. Equations Control Processes (e-journal), 1 (2002),
  10. 10.
    I. V. Kulemin and A. G. Meshkov, “To the classification of integrable systems in 1 + 1 dimensions,” in: Symmetry in Nonlinear Mathematical Physics. Proc. 2 Int. Conf., Kyiv, Ukraine, July 7–13, 1997, Ukr. Inst. Math., Kyiv (1997), pp. 115–121.Google Scholar
  11. 11.
    A. G. Meshkov, “Necessary conditions of integrability,” Inverse Probl., 10, No.3, 635–653 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. G. Meshkov, “Integrability and integrodifferential substitutions,” J. Math. Phys., 38, No. 12, 6428–6443 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    A. G. Meshkov, “Tools for symmetry analysis of PDEs,” Differ. Equations Control Processes (ejournal), 1 (2002),
  14. 14.
    A. G. Meshkov and M. Yu. Balakhnev, “Integrable anisotropic evolution equations on a sphere,” in: Symmetry, Integrability and Geometry: Methods and Applications, 1, No. 027 (2005).Google Scholar
  15. 15.
    A. G. Meshkov and V. V. Sokolov, “Integrable evolution equations on the N-dimensional sphere,” Commun. Math. Phys., 232, No. 1, 1–18 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. G. Meshkov and V. V. Sokolov, “Classification of integrable divergent N-component evolutionary systems,” Teor. Mat. Fiz., 139, No. 2, 192–208 (2004).MathSciNetGoogle Scholar
  17. 17.
    A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, “The symmetry approach to classification of integrable equations,” in: What is Integrability? (V. E. Zakharov, ed.), Springer-Verlag, New York (1991), pp. 115–184.Google Scholar
  18. 18.
    A. V. Mikhailov and V. V. Sokolov, “Symmetries of differential equations and the problem of integrability,” in: Integrability (A. V. Mikhailov, ed.), Princeton Univ. Press (2003).Google Scholar
  19. 19.
    P. J. Olver and V. V. Sokolov, “Integrable evolution equations on associative algebras,” Commun. Math. Phys., 193, No. 2, 245–268 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    P. J. Olver and V. V. Sokolov, “Non-abelian integrable systems of the derivative nonlinear Schrödinger type,” Inverse Probl., 14, No. 6, L5–L8 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    V. V. Sokolov and S. I. Svinolupov, “Vector-matrix generalizations of classical integrable equations,” Teor. Mat. Fiz., 100, No. 4, 214–218 (1994).MathSciNetGoogle Scholar
  22. 22.
    V. V. Sokolov, S. I. Svinolupov, and T. Wolf, “On linearizable evolution equations of second order,” Phys. Lett., A163, 415–418 (1992).MathSciNetGoogle Scholar
  23. 23.
    V. V. Sokolov and T. Wolf, “Classification of integrable polynomial vector evolution equations,” J. Phys. A: Math. Gen., 34, No. 49, 11139–11148 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    S. I. Svinolupov and V. V. Sokolov, “Deformations of triple-Jordan systems and integrable equations,” Teor. Mat. Fiz., 108, No. 3, 388–392 (1996).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Orel State UniversityOrelRussia

Personalised recommendations