Advertisement

Journal of Mathematical Sciences

, Volume 151, Issue 4, pp 3185–3191 | Cite as

Transformations of integrable hydrodynamic chains and their hydrodynamic reductions

  • M. V. PavlovEmail author
Article
  • 25 Downloads

Abstract

Hydrodynamic reductions of the hydrodynamic chain associated with the dispersionless limit of the 2+1-dimensional Harry-Dym equation are found by using the Miura type and reciprocal transformations applied to the Benney hydrodynamic chain.

Keywords

Riemannian Surface Riemann Mapping Reciprocal Transformation Hydrodynamic Type System Hydrodynamic Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Benney, “Some properties of long nonlinear waves,” Stud. Appl. Math., 52 45–50, (1973).zbMATHGoogle Scholar
  2. 2.
    L. V. Bogdanov and B. G. Konopelchenko, “Symmetry constraints for dispersionless integrable equations and systems of hydrodynamic type,” Phys. Lett., A330, 448–459 (2004).MathSciNetGoogle Scholar
  3. 3.
    Jen-Hsu Chang, “Hydrodynamic reductions of dispersionless Harry-Dym hierarchy,” J. Phys. A: Math. Gen., 38, No. 29, 6505–6515 (2005).zbMATHCrossRefGoogle Scholar
  4. 4.
    Jen-Hsu Chang and Ming-Hsien Tu, “On the Miura map between the dispersionless KP and dispersionless modified KP hierarchies,” J. Math. Phys., 41, No. 8, 5391–5406 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Yu-Tung Chen and Ming-Hsien Tu, “A note on the dispersionless Dym hierarchy,” Lett. Math. Phys., 63, 125–139 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    E. V. Ferapontov and K. R. Khusnutdinova, “On integrability of (2+1)-dimensional quasilinear systems,” Commun. Math. Phys., 248, 187–206 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E. V. Ferapontov and K. R. Khusnutdinova, “The characterization of 2-component (2+1)-dimensional integrable systems of hydrodynamic type,” J. Phys. A: Math. Gen., 37, No. 8, 2949–2963 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Gibbons, “Collisionless Boltzmann equations and integrable moment equations,” Physica, D3, 503–511 (1981).MathSciNetGoogle Scholar
  9. 9.
    J. Gibbons and S. P. Tsarev, “Reductions of Benney’s equations,” Phys. Lett., A211, 19–24 (1996).MathSciNetGoogle Scholar
  10. 10.
    J. Gibbons and S. P. Tsarev, “Conformal maps and reductions of the Benney equations,” Phys. Lett., A258, 263–270 (1999).MathSciNetGoogle Scholar
  11. 11.
    J. Gibbons, L. A. Yu, “The initial value problem for reductions of the Benney equations,” Inverse Probl., 16, No. 3, 605–618 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    L. A. Yu, “Waterbag reductions of the dispersionless discrete KP hierarchy,” J. Phys. A: Math. Gen., 33, 8127–8138 (2000).zbMATHCrossRefGoogle Scholar
  13. 13.
    Y. Kodama, “A method for solving the dispersionless KP equation and its exact solutions,” Phys. Lett., A129, No. 4, 223–226 (1988).MathSciNetGoogle Scholar
  14. 14.
    Y. Kodama, “A solution method for the dispersionless KP equation,” Prog. Theor. Phys. Suppl., 94, 184 (1988).CrossRefMathSciNetGoogle Scholar
  15. 15.
    I. M. Krichever, “The averaging method for two-dimensional “integrable” equations,” Funct. Anal. Appl., 22, No. 3, 200–213 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications,” Russ. Math. Surv., 44, No. 2, 145–225 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    I. M. Krichever, “The dispersionless equations and topological minimal models,” Commun. Math. Phys., 143, No. 2, 415–429 (1992).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    I. M. Krichever, “The τ-function of the universal Whitham hierarchy, matrix models and topological field theories,” Commun. Pure Appl. Math., 47, 437–475 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    B. A. Kupershmidt, “Deformations of integrable systems,” Proc. Roy. Irish Acad. Sec. A, 83, No. 1, 45–74 (1983).zbMATHMathSciNetGoogle Scholar
  20. 20.
    B. A. Kupershmidt, “Normal and universal forms in integrable hydrodynamical systems,” in: Proc. Berkeley-Ames Conf. Nonlinear Problems in Control and Fluid Dynamics (Berkeley, Calif., 1983), Systems Inform. Control, II, Math. Sci. Press, Brookline (1984), pp. 357–378.Google Scholar
  21. 21.
    M. V. Pavlov, “Local Hamiltonian structures of Benney’s system,” Russ. Phys. Dokl., 39, No. 9, 607–608 (1994).Google Scholar
  22. 22.
    M. V. Pavlov, “Exact integrability of a system of the Benney equations,” Russ. Phys. Dokl., 39, No. 11, 745–747 (1994).zbMATHGoogle Scholar
  23. 23.
    M. V. Pavlov, “The Kupershmidt hydrodynamic chains and lattices,” unpublished.Google Scholar
  24. 24.
    M. V. Pavlov, “The Hamiltonian approach in the classification and the integrability of hydrodynamic chains,” unpublished.Google Scholar
  25. 25.
    C. Rogers, “The Harry-Dym equation in (2 + 1) dimensions: a reciprocal link with the Kadomtsev-Petviashvili equation,” Phys. Lett., A120, No. 1, 15–18 (1987).Google Scholar
  26. 26.
    W. Oevel and C. Rogers, “Gauge transformations and reciprocal links in (2 + 1) dimensions,” Rev. Math. Phys., 5, 299–330 (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Jiin-Chang Shaw and Ming-Hsien Tu, “Canonical Miura maps between the modified KP and KP hierarchies,” J. Phys. A: Math. Gen., 30, 4825–4833 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Derchyi Wu, Ming-Hsien Tu, Yu-Tung Chen, and Jen-Hsu Chang, “The \( \bar \partial \) approach to the dispersionless (2+1)-Harry-Dym hierarchy,” J. Phys. A: Math. Gen., 38, 6167–6181 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    V. E. Zakharov, “Benney’s equations and quasi-classical approximation in the inverse problem method,” Funct. Anal. Appl., 14, No. 2, 89–98 (1980).zbMATHCrossRefGoogle Scholar
  30. 30.
    V. E. Zakharov, “On the Benney’s equations,” Physica, D3, 193–200 (1981).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Lebedev Physical InstituteMoscowRussia

Personalised recommendations