Journal of Mathematical Sciences

, Volume 151, Issue 3, pp 2937–2948 | Cite as

Subgroups of symplectic groups that contain a subsystem subgroup

  • N. A. Vavilov
Article

Abstract

Let Γ = GSp(2l, R) be the general symplectic group of rank l over a commutative ring R such that 2 ∈ R*; and let ν be a symmetric equivalence relation on the index set {1,…, l, −l,…, 1} all of whose classes contain at least 3 elements. In the present paper, we prove that if a subgroup H of Γ contains the group EΓ(ν) of elementary block diagonal matrices of type ν, then H normalizes the subgroup generated by all elementary symplectic transvections Tij(ξ) ∈ H. Combined with the previous results, this completely describes the overgroups of subsystem subgroups in this case. Similar results for subgroups of GL(n, R) were established by Z. I. Borewicz and the author in the early 1980s, while for GSp(2l, R) and GO(n, R) they have been announced by the author in the late 1980s, but a complete proof for the symplectic case has not been published before. Bibliography: 74 titles.

Keywords

Russia Equivalence Relation Commutative Ring Diagonal Matrice Complete Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. I. Borewicz, “Description of the subgroups of the general linear group that contain the group of diagonal matrices,” Zap. Nauchn. Semin. LOMI, 64, 12–29 (1976).MATHGoogle Scholar
  2. 2.
    Z. I. Borewicz and N. A. Vavilov, “Subgroups of the general linear group over a semilocal ring that contain the group of diagonal matrices,” Tr. Mat. Inst. AN SSSR, 148, 43–57 (1978).Google Scholar
  3. 3.
    Z. I. Borewicz and N. A. Vavilov, “Arrangement of the subgroups that contain the group of block diagonal matrices in the general linear group over a ring,” Izv. VUZ’ov, 11, 12–16 (1982).Google Scholar
  4. 4.
    Z. I. Borewicz and N. A. Vavilov, “Subgroups of the general linear group over a commutative ring,” Dokl. Akad Nauk, 267, No. 4, 777–778 (1982).MathSciNetGoogle Scholar
  5. 5.
    Z. I. Borewicz and N. A. Vavilov, “Arrangement of subgroups in the general linear group over a commutative ring,” Tr. Mat. Inst. AN SSSR, 165, 24–42 (1984).Google Scholar
  6. 6.
    Z. I. Borewicz, N. A. Vavilov, and V. Narkevich, “Subgroups of the general linear group over a Dedekind ring,” Zap. Nauchn. Semin. LOMI, 94, 13–20 (1979).Google Scholar
  7. 7.
    N. A. Vavilov, “Parabolic subgroups of Chevalley groups over a semilocal ring,” Zap. Nauchn. Semin. LOMI, 75, 43–58 (1978).MATHMathSciNetGoogle Scholar
  8. 8.
    N. A. Vavilov, “Subgroups of the general linear group over a semilocal ring that contain the group of block diagonal matrices,” Vestn. LGU, 1, 10–15 (1981).MathSciNetGoogle Scholar
  9. 9.
    N. A. Vavilov, “Subgroups of the general linear group over a semilocal ring that contain the group of block diagonal matrices,” Vestn. LGU, 1, 16–21 (1983).MathSciNetGoogle Scholar
  10. 10.
    N. A. Vavilov, “Subgroups of split classical groups,” Doctoral Thesis, Leningrad State Univ. (1987).Google Scholar
  11. 11.
    N. A. Vavilov, “The structure of split classical groups over a commutative ring,” Dokl. Akad. Nauk, 299, No. 6, 1300–1303 (1988).MathSciNetGoogle Scholar
  12. 12.
    N. A. Vavilov, “Subgroups of split orthogonal groups over a ring,” Sib. Mat. Zh., 29, No. 4, 31–43 (1988).MathSciNetGoogle Scholar
  13. 13.
    N. A. Vavilov, “Subgroups of split classical groups,” Tr. Steklov Mat. Inst. Akad. Nauk SSSR, 183, 29–41 (1990).MATHMathSciNetGoogle Scholar
  14. 14.
    N. A. Vavilov, “Subgroups of the general symplectic group over a commutative ring,” in: Rings and Modules. Limit Theorems in Probability Theory, Izd. SPbGu (1993), pp. 16–38.Google Scholar
  15. 15.
    N. A. Vavilov, “Subgroups of split orthogonal groups. II,” Zap. Nauchn. Semin. POMI, 265, 42–63 (1999).MathSciNetGoogle Scholar
  16. 16.
    N. A. Vavilov, “Subgroups of split orthogonal groups over a commutative ring,” Zap. Nauchn. Semin. POMI, 281, 35–59 (2001).Google Scholar
  17. 17.
    N. A. Vavilov, “Subgroups of the spinor group that contain a split maximal torus. II,” Zap. Nauchn. Semin. POMI, 289, 37–56 (2002).Google Scholar
  18. 18.
    N. A. Vavilov, “Subgroups of the group SLn over a semilocal ring,” Zap. Nauchn. Semin. POMI, 343, 33–53 (2007).MathSciNetGoogle Scholar
  19. 19.
    N. A. Vavilov and M. R. Gavrilovich, “A 2-proof of structure theorems for Chevalley groups of type E 6 and E 7,” Algebra Analiz, 16, No. 4, 54–87 (2004).MathSciNetGoogle Scholar
  20. 20.
    N. A. Vavilov, M. R. Gavrilovich, and S. I. Nikolenko, “Structure of Chevalley groups: the proof from the Book,” Zap. Nauchn. Semin. POMI, 330, 36–76 (2006).MATHGoogle Scholar
  21. 21.
    N. A. Vavilov and S. I. Nikolenko, “A 2-proof of structure theorems for Chevalley groups of type F 4,” Algebra Analiz, 20, No. 3 (2008).Google Scholar
  22. 22.
    N. A. Vavilov and E. V. Dybkova, “Subgroups of the general symplectic groups that contain the group of diagonal matrices. I, II,” Zap. Nauchn. Semin. POMI, 103, 31–47 (1980); 132, 44–56 (1983).MATHMathSciNetGoogle Scholar
  23. 23.
    N. A. Vavilov and V. A. Petrov, “Overgroups of EO(2l, R),” Zap. Nauchn. Semin. POMI, 272, 68–85 (2002).Google Scholar
  24. 24.
    N. A. Vavilov and V. A. Petrov, “Overgroups of Ep(2l, R),” Algebra Analiz, 15, No. 3, 72–114 (2003).MathSciNetGoogle Scholar
  25. 25.
    N. A. Vavilov and V. A. Petrov, “Overgroups of EO(n, R),” Algebra Analiz, 19, No. 2, 10–51 (2007).MathSciNetGoogle Scholar
  26. 26.
    N. A. Vavilov and A. V. Stepanov, “Subgroups of the general linear group over a ring that satisfy stability conditions,” Izv. VUZ’ov, 10, 19–25 (1989).MathSciNetGoogle Scholar
  27. 27.
    N. A. Vavilov and E. A. Filippova, “Overgroups of A l−1 in the hyperbolic embedding” (to appear).Google Scholar
  28. 28.
    I. Z. Golubchik, “Subgroups of the general linear groups over an associative ring,” Usp. Mat. Nauk, 39, No. 1, 125–126 (1984).MathSciNetGoogle Scholar
  29. 29.
    E. V. Dybkova, “Net subgroups of hyperbolic unitary groups,” Algebra Analiz, 9, No. 4, 87–96 (1997).Google Scholar
  30. 30.
    E. V. Dybkova, “Overdiagonal subgroups of a hyperbolic unitary group for good form ring over a field,” Zap. Nauchn. Semin. POMI, 236, 87–96 (1997).Google Scholar
  31. 31.
    E. V. Dybkova, “Form nets and the lattice of overdiagonal subgroups in a symplectic group over a field of characteristic 2,” Algebra Analiz, 10, No. 4, 113–127 (1998).MathSciNetGoogle Scholar
  32. 32.
    E. V. Dybkova, “Overdiagonal subgroups of a hyperbolic unitary group over a noncommutative skew field,” Zap. Nauchn. Semin. POMI, 289, 154–206 (2002).Google Scholar
  33. 33.
    E. V. Dybkova, “Overdiagonal subgroups of a hyperbolic unitary group for a good form ring over a noncommutative skew field,” Zap. Nauchn. Semin. POMI, 305, 121–135 (2003).Google Scholar
  34. 34.
    E. V. Dybkova, “The Borewicz theorem for a hyperbolic unitary group over a noncommutative skew field,” Zap. Nauchn. Semin. POMI, 321, 136–167 (2005).MATHGoogle Scholar
  35. 35.
    E. V. Dybkova, “Subgroups of hyperbolic unitary groups,” Doctoral Thesis, St. Petersburg Gos. Univ. (2006).Google Scholar
  36. 36.
    E. V. Dybkova, “Overgroups of the diagonal group in a hyperbolic group over a simple Artin ring. I,” Zap. Nauchn. Semin. POMI, 338, 155–172 (2006).MATHGoogle Scholar
  37. 37.
    V. A. Koibaev, “Subgroups of the general linear group that contain the group of elementary block diagonal matrices,” Vestn. LGU, 13, 33–40 (1982).MathSciNetGoogle Scholar
  38. 38.
    V. A. Koibaev, “Subgroups of the general linear group over a finite field that contain the group of elementary block diagonal matrices,” in: Structural Properties of Groups, Ordzhonikidze (1982), pp. 6–12.Google Scholar
  39. 39.
    V. I. Kopeiko, “Stabilization of symplectic groups over the ring of polynomials,” Mat. Sb., 106, No. 1, 94–107 (1978).MathSciNetGoogle Scholar
  40. 40.
    A. Khatib, “Subgroups of a split orthogonal group over a commutative ring,” in: Rings and Modules. Limit Theorems in Probability Theory, Izd. SPbGU (1993), pp. 74–86.Google Scholar
  41. 41.
    O. T. O’Meara, Lectures in Symplectic Groups [Russian translation], Mir, Moscow (1979).Google Scholar
  42. 42.
    V. A. Petrov, “Odd unitary groups,” Zap. Nauchn. Semin. POMI, 305, 195–225 (2003).Google Scholar
  43. 43.
    V. A. Petrov, “Overgroups of classical groups,” Ph. D. Thesis, SPbGU (2005).Google Scholar
  44. 44.
    R. Steinberg, Lectures in Chevalley Groups [Russian translation], Mir, Moscow (1973).Google Scholar
  45. 45.
    A. V. Stepanov, “Stability conditions in the theory of linear groups over rings,” Ph. D. Thesis, Leningrad Gos. Univ. (1987).Google Scholar
  46. 46.
    E. Abe and K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 28, No. 1, 185–198 (1976).MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    A. Bak, The Stable Structure of Quadratic Modules, Thesis, Columbia Univ. (1969).Google Scholar
  48. 48.
    A. Bak, K-Theory of Forms, Princeton Univ. Press, Princeton (1981).Google Scholar
  49. 49.
    A. Bak, Lectures on Dimension Theory, Group Valued Functors, and Nonstable K-Theory, Buenos Aires (1995).Google Scholar
  50. 50.
    A. Bak and M. Morimoto, “Equivariant surgery with middle-dimensional singular sets. I,” Forum Math., 8, No. 3, 267–302 (1996).MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    A. Bak and A. Stepanov, “Dimension theory and nonstable K-theory for net groups,” Rend. Sem. Mat. Univ. Padova, 106, 207–253 (2001).MATHMathSciNetGoogle Scholar
  52. 52.
    A. Bak and N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups,” Algebra Colloquium, 7, No. 2, 159–196 (2000).MATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    H. Bass, “Unitary algebraic K-Theory,” Lect. Notes Math., 343, 57–265 (1973).CrossRefMathSciNetGoogle Scholar
  54. 54.
    D. Costa and G. Keller, “Radix redux: normal subgroups of symplectic group,” J. reine angew. Math., 427, No. 1, 51–105 (1992).MATHMathSciNetGoogle Scholar
  55. 55.
    F. Grünewald, J. Mennicke, and L. N. Vaserstein, “On symplectic groups over polynomial rings,” Math. Z., 206, No. 1, 35–56 (1991).CrossRefMathSciNetGoogle Scholar
  56. 56.
    A. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer-Verlag, N.Y. et al. (1989).MATHGoogle Scholar
  57. 57.
    R. Hazrat, “Dimension theory and non-stable K1 of quadratic module,” K-Theory, 27, 293–327 (2002).MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    R. Hazrat and N. A. Vavilov, “K1 of Chevalley groups are nilpotent,” J. Pure Appl. Algebra, 179, 99–116 (2003).MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    R. Hazrat and N. A. Vavilov, “Bak’s work on K-theory of rings” (to appear).Google Scholar
  60. 60.
    Li Fuan, “The structure of symplectic group over arbitrary commutative rings,” Acta Math. Sinica, New Series, 3, No. 3, 247–255 (1987).MATHCrossRefGoogle Scholar
  61. 61.
    V. A. Petrov, “Overgroups of unitary groups,” K-Theory, 29, 147–174 (2003).MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    A. I. Steinbach, “Subgroups of classical groups generated by transvections or Siegel transvections. I, II,” Geom. Dedic., 68, 281–322, 323–357 (1997).MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    A. Stepanov, “Nonstandard subgroups between E n(R) and GLn(A),” Algebra Colloquium, 10, No. 3, 321–334 (2004).Google Scholar
  64. 64.
    A. Stepanov and N. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory, 19, 109–153 (2000).MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    A. Stepanov, N. Vavilov, and You Hong, “Overgroups of semisimple subgroups via localization-completion” (to appear).Google Scholar
  66. 66.
    G. Taddei, “Invariance du sous-groupe symplectique élémentaire dans le groupe symplectique sur un anneau,” C. R. Acad. Sci Paris, Sér I, 295, No. 2, 47–50 (1982).MATHMathSciNetGoogle Scholar
  67. 67.
    F. G. Timmesfeld, “Groups generated by k-transvections,” Invent. Math., 100, 167–206 (1990).MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    F. G. Timmesfeld, “Groups generated by k-root subgroups,” Invent. Math., 106, 575–666 (1991).MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    F. G. Timmesfeld, “Groups generated by k-root subgroups — a survey,” in: Groups, Combinatorics, and Geometry (Durham-1990), Cambridge Univ. Press (1992), pp. 183–204.Google Scholar
  70. 70.
    F. G. Timmesfeld, “Abstract root subgroups and quadratic actions. With an appendix by A. E. Zalesskii,” Adv. Math., 142, No. 1, 1–150 (1999).MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    L. N. Vaserstein, “Normal subgroups of symplectic groups over rings,” K-Theory, 2, No. 5, 647–673 (1989).MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    N. A. Vavilov, “Structure of Chevalley groups over commutative rings,” in: Proceedings of the Conference on Nonassociative Algebras and Related Topics (Hiroshima-1990), World Sci. Publ., London (1991), pp. 219–335.Google Scholar
  73. 73.
    N. A. Vavilov, “Intermediate subgroups in Chevalley groups,” in: Proceedings of the Conference on Groups of Lie Type and Their Geometries (Como-1993), Cambridge Univ. Press (1995), pp. 233–280.Google Scholar
  74. 74.
    You Hong, “Overgroups of symplectic group in linear group over commutative rings,” J. Algebra, 282, No. 1, 23–32 (2004).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • N. A. Vavilov
    • 1
  1. 1.St.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations