Journal of Mathematical Sciences

, Volume 149, Issue 4, pp 1417–1452

Spectral stability of nonnegative self-adjoint operators

  • V. I. Burenkov
  • P. D. Lamberti
  • M. Lanza de Cristoforis
Article

Abstract

The survey is devoted to spectral stability problems for uniformly elliptic differential operators under the variation of the domain and to the accompanying estimates for the difference of the eigenvalues. Two approaches to the problem are discussed in detail. In the first one it is assumed that the domain is transformed by means of a transformation of a certain class, and the spectral stability with respect to this transformation is investigated. The second approach is based on the notion of a transition operator and allows direct comparison of the eigenvalues on domains which are close in that or another sense.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ancona, “On strong barriers and an inequality on Hardy for domains in ℝn,” J. London Math. Soc., 34, 274–290 (1986).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    V. I. Arnold, “Modes and quasimodes,” Funkcional. Anal. Priložen., 6, 12–20 (1972).Google Scholar
  3. 3.
    I. Babuška, “Stability of the domains for the main problems of the theory of differential equations. I, II,” Czech. Math. J., 11(86), 76–105, 165–203 (1961).Google Scholar
  4. 4.
    I. Babuška and R. Výborný, “Continuous dependence of eigenvalues on the domain,” Czech. Math. J., 15(90), 169–178 (1965).Google Scholar
  5. 5.
    O. V. Besov, V. P. Il’in, and S. M. Nikol’ski, Integral Representation of Functions and Imbedding Theorems, Vol. I, II., Scripta Series in Mathematics, Halsted Press, New York-Toronto (1979).Google Scholar
  6. 6.
    H. Brezis and M. Marcus, “Hardy’s inequalities revisited,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25, 217–237 (1998).MathSciNetGoogle Scholar
  7. 7.
    V. I. Burenkov, “Approximation of functions in the space W pr (Ω) by functions with compact support for an arbitrary open set Ω,” Proc. Steklov. Math. Inst., 131, 51–63 (1974).MathSciNetGoogle Scholar
  8. 8.
    V. I. Burenkov, Sobolev Spaces on Domains, B. G. Teubner, Stuttgart-Leipzig (1998).MATHGoogle Scholar
  9. 9.
    V. I. Burenkov and E. B. Davies, “Spectral stability of the Neumann Laplacian,” J. Differ. Equ., 186, 485–508 (2002).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    V. I. Burenkov and P. D. Lamberti, “Spectral stability of nonnegative self-adjoint opeartors,” Dokl. Math., 72, 507–511 (2005).MATHGoogle Scholar
  11. 11.
    V. I. Burenkov and P. D. Lamberti, “Spectral stability of general nonnegative self-adjoint operators with applications to Neumann-type operators,” submitted for publication.Google Scholar
  12. 12.
    V. I. Burenkov and P. D. Lamberti, “Spectral stability of Dirichlet second-order uniformly elliptic operators,” manuscript.Google Scholar
  13. 13.
    V. I. Burenkov and P. D. Lamberti, “Spectral stability of high-order uniformly elliptic operators,” manuscript.Google Scholar
  14. 14.
    V. I. Burenkov and M. Lanza de Cristoforis, “Spectral stability of the Robin Laplacian,” submitted for publication.Google Scholar
  15. 15.
    P. Buser, “On Cheeger’s inequality λ 1h 2/4,” in: Geometry of the Laplace Operator (Proc. Symp. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 29–77 (1980).Google Scholar
  16. 16.
    T. Chatelain, “A new approach to two overdetermined eigenvalue problems of Pompeiu type,” Élasticité, viscoélasticité et contrôle optimal (Lyon, 1995), 235–242 (electronic), ESAIM Proc., 2, Soc. Math. Appl. Ind., Paris, 1997.Google Scholar
  17. 17.
    J. Cheeger, “A lower bound for the smallest eigenvalue of the Laplacian,” in Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N.J., 195–199 (1970).Google Scholar
  18. 18.
    Y. Colin de Verdière, “Sur une hypothèse de transversalité d’Arnold,” Comment. Math. Helv., 63, 184–193 (1988).MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York (1953).Google Scholar
  20. 20.
    S. J. Cox, “The generalized gradient at a multiple eigenvalue,” J. Funct. Anal., 133, 30–40 (1995).MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge (1990).Google Scholar
  22. 22.
    E. B. Davies, “Eigenvalue stability bounds via weighted Sobolev spaces,” Math. Z., 214, 357–371 (1993).MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    E. B. Davies, Spectral Theory and Differential Operators, Cambridge University Press, Cambridge (1995).Google Scholar
  24. 24.
    E. B. Davies, “A review on Hardy inequalities,” in: The Maz’ya Anniversary Collection, Vol. 2 (Rostock, 1998), Operator Theory: Advances and Applications, Vol. 110, Birkhäuser Verlag, 55–67 (1999).Google Scholar
  25. 25.
    E. B. Davies, “Sharp boundary estimates for elliptic operators,” Math. Proc. Camb. Philos. Soc., 129, 165–178 (2000).MATHCrossRefGoogle Scholar
  26. 26.
    D. M. Eidus, “Estimates for the modulus of eigenfunctions,” Dokl. Akad. Nauk, 90, 973–974 (1953).MathSciNetGoogle Scholar
  27. 27.
    D. M. Eidus, “Some inequalities for eigenfunctions,” Dokl. Akad. Nauk, 107, 796–798 (1956).MathSciNetGoogle Scholar
  28. 28.
    R. Hempel, L. A. Seco, and B. Simon, “The essential spectrum of Neumann Laplacians on some bounded singular domains,” J. Funct. Anal., 102, 448–483 (1991).MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    D. Henry, Topics in Nonlinear Analysis, Trabalho de Matemática 192, Univ. Brasilia, Março (1982).Google Scholar
  30. 30.
    D. Henry, Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations, London Mathematical Society Lecture Note Series No. 318, Cambridge University Press, Cambridge (2005).MATHGoogle Scholar
  31. 31.
    V. A. Il’in and I. A. Shishmaryev, “Uniform estimates in a closed domain for the eigenfunctions of an elliptic operator and their derivatives,” Izv. Akad. Nauk, 24, 883–896 (1960).MATHGoogle Scholar
  32. 32.
    T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, Berlin-New York (1976).MATHGoogle Scholar
  33. 33.
    P. D. Lamberti and M. Lanza de Cristoforis, “An analyticity result for the dependence of multiple eigenvalues and eigenspaces of the Laplace operator upon perturbation of the domain,” Glasgow Math. J., 44, 29–43 (2002).MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    P. D. Lamberti and M. Lanza de Cristoforis, “A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator,” J. Nonlinear Convex Anal., 5, 19–42 (2004).MATHMathSciNetGoogle Scholar
  35. 35.
    P. D. Lamberti and M. Lanza de Cristoforis, “Lipschitz type inequalities for a domain dependent Neumann eigenvalue problem for the Laplace operator,” in H. G. W. Begehr, R. P. Gilbert, M. E. Muldoon, and M. W. Wong (Eds.), Advances in Analysis, Proceedings of the 4th International ISAAC Congress, York University, Toronto, Canada, 11–16 August 2003, World Scientific Publishing (2005).Google Scholar
  36. 36.
    P. D. Lamberti and M. Lanza de Cristoforis, “Persistence of eigenvalues and multiplicity in the Neumann problem for the Laplace operator on nonsmooth domains,” Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl., 76, 413–427 (2005).MathSciNetGoogle Scholar
  37. 37.
    P. D. Lamberti and M. Lanza de Cristoforis, “A global Lipschitz continuity result for a domain dependent Dirichlet eigenvalue problem for the Laplace operator,” Z. Anal. Anwendungen, 24, 277–304 (2005).MATHMathSciNetGoogle Scholar
  38. 38.
    P. D. Lamberti and M. Lanza de Cristoforis, “A global Lipschitz continuity result for a domain dependent Neumann eigenvalue problem for the Laplace operator,” J. Differ. Equ., 216, 109–133 (2005).MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    P. D. Lamberti and M. Lanza de Cristoforis, “Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems,” J. Math. Soc. Jpn., 58, 231–245 (2006).MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    P. D. Lamberti and M. Lanza de Cristoforis, “Persistence of eigenvalues and multiplicity in the Dirichlet problem for the Laplace operator on nonsmooth domains,” Math. Phys., Anal., Geom., 9, 65–94 (2006).MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    P. D. Lamberti and M. Lanza de Cristoforis, “A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Neumann problem for the Laplace operator,” submitted for publication.Google Scholar
  42. 42.
    M. L. Lapidus and M. M. H. Pang, “Eigenfunctions of the Koch snowflake domain,” Commun. Math. Phys., 172, 359–376 (1995).MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    D. Lupo and A. M. Micheletti, “On multiple eigenvalues of self-adjoint compact operators,” J. Math. Anal. Appl., 172, 106–116 (1993).MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    D. Lupo and A. M. Micheletti, “On the persistence of the multiplicity of eigenvalues for some variational elliptic operator on the domain,” J. Math. Anal. Appl., 193, 990–1002 (1995).MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    D. Lupo and A. M. Micheletti, “A remark on the structure of the set of perturbations which keep fixed the multiplicity of two eigenvalues,” Rev. Mat. Apl., 16, 47–56 (1995).MATHMathSciNetGoogle Scholar
  46. 46.
    A. M. Micheletti, “Perturbazione dello spettro dell’operatore di Laplace, in relazione ad una variazione del campo,” Ann. Scuola Norm. Sup. Pisa (3), 26, 151–169 (1972).MATHMathSciNetGoogle Scholar
  47. 47.
    A. M. Micheletti, “Perturbazione dello spettro di un operatore ellittico di tipo variazionale, in relazione ad una variazione del campo,” Ann. Mat. Pura Appl., 97, 267–281 (1973).MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    A. M. Micheletti, “Perturbazione dello spettro di un operatore ellittico di tipo variazionale, in relazione ad una variazione del campo. II,” Ricerche Mat., 25, 187–200 (1976).MathSciNetMATHGoogle Scholar
  49. 49.
    J. Nečas, Les Méthodes Directes en Theorie des Equations Elliptiques, Masson et Cie, Paris (1967).Google Scholar
  50. 50.
    M. M. H. Pang, “Approximation of ground state eigenfunction on the snowflake region,” Bull. Lond. Math. Soc., 28, 488–494 (1996).MATHCrossRefGoogle Scholar
  51. 51.
    M. M. H. Pang, “Approximation of ground state eigenvalues and eigenfunctions of Dirichlet Laplacians,” Bull. London Math. Soc., 29, 720–730 (1997).MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    G. Pólya and M. Schiffer, “Convexity of functionals by transplantation,” J. Anal. Math., 3, 245–346 (1954).MATHCrossRefGoogle Scholar
  53. 53.
    G. Prodi, “Dipendenza dal dominio degli autovalori dell’operatore di Laplace,” Ist. Lombardo Accad. Sci. Lett. Rend. A., 128, 3–18 (1994).MathSciNetGoogle Scholar
  54. 54.
    F. Rellich, Perturbation Theory of Eigenvalue Problems, Gordon and Breach Science Publishers, New York (1969).MATHGoogle Scholar
  55. 55.
    F. Riesz and B. Nagy, Functional Analysis, Dover Publications, Inc., New York, (1990).MATHGoogle Scholar
  56. 56.
    L. N. Slobodetski, “Potential theory for parabolic equations,” Dokl. Akad. Nauk, 103, 19–22 (1955).Google Scholar
  57. 57.
    Kh. L. Smolitski, “Estimates for the derivatives of fundamental functions,” Dokl. Akad. Nauk, 74, 205–208 (1950).Google Scholar
  58. 58.
    J. Sokolowski and J. P. Zolésio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer, Berlin (1992).MATHGoogle Scholar
  59. 59.
    M. Teytel, “How rare are multiple eigenvalues?,” Commun. Pure Appl. Math., 52, 917–934 (1999).CrossRefMathSciNetGoogle Scholar
  60. 60.
    G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York-London (1987).MATHGoogle Scholar
  61. 61.
    V. Ya. Yakubov, “Sharp estimates for L 2-normalized eigenfunctions of an elliptic operator,” Dokl. Akad. Nauk, 48, 52–55 (1994).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. I. Burenkov
    • 1
  • P. D. Lamberti
    • 2
  • M. Lanza de Cristoforis
    • 2
  1. 1.Cardiff School of MathematicsCardiff UniversityCardiffUK
  2. 2.Dipartimento di Matematica Pura ed ApplicataUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations