Journal of Mathematical Sciences

, Volume 145, Issue 1, pp 4751–4764 | Cite as

Orbits of subsystem stabilizers

  • N. A. Vavilov
  • N. P. Kharchev


Let Φ be a reduced irreducible root system. We consider pairs (S, X (S)), where S is a closed set of roots, X(S) is its stabilizer in the Weyl group W(Φ). We are interested in such pairs maximal with respect to the following order: (S1, X (S1)) ≤ (S2, X (S2)) if S1 ⊆ S2 and X(S1) ≤ X(S2). The main theorem asserts that if Δ is a root subsystem such that (Δ, X (Δ)) is maximal with respect to the above order, then X (Δ) acts transitively both on the long and short roots in Φ \ Δ. This result is a wide generalization of the transitivity of the Weyl group on roots of a given length. Bibliography: 23 titles.


Root System Conjugacy Class Weyl Group Wreath Product Fundamental System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Borel and J. Tits, “Unipotent elements and parabolic subgroups in reductive groups. I [Russian translation],” Matematica, 12, 97–104 (1971).MathSciNetGoogle Scholar
  2. 2.
    N. Bourbaki, Lie Groups and Algebras [Russian translation], Chaps. IV-VI, Mir, Moscow 1972).Google Scholar
  3. 3.
    N. A. Vavilov, “Maximal subgroups of Chevalley groups which contain a split maximal torus,” in: Rings and Modules, Leningrad (1986), pp. 67–75.Google Scholar
  4. 4.
    N. A. Vavilov, “Weight elements of Chevalley groups,” Dokl. AN SSSR, 298, No. 3, 524–527 (1988).Google Scholar
  5. 5.
    N. A. Vavilov, “Conjugacy theorems for subgroups of extended Chevalley groups which contain a split maximal torus, Dokl. AN SSSR, 299, No. 2, 269–272 (1988).MathSciNetGoogle Scholar
  6. 6.
    N. A. Vavilov, “Subgroups of Chevalley groips which contain a maximal torus,” Trudy Leningr. Mat. Obshch., 1, 64–109 (1990).zbMATHMathSciNetGoogle Scholar
  7. 7.
    N. A. Vavilov, “Unipotent elements in the subgroups of extended Chevalley groups that contain a split maximal torus,” Dokl. RAN, 328, No. 5, 536–539 (1993).MathSciNetGoogle Scholar
  8. 8.
    N. A. Vavilov, A. Yu. Luzgarev, and I. M. Pevzner, “Chevalley groups of type E 6 in the 27-dimensional representation,” this issue, 5–68.Google Scholar
  9. 9.
    N. A. Vavilov and A. A. Semenov, “Long root semisimple elements in Chevalley groups,” Dokl. RAN, 338, No. 6, 725–727 (1994).Google Scholar
  10. 10.
    E. B. Vinberg and A. G. Elashvili, “Classification of trivectors in the nine-dimensional space,” Trudy Semin. Vekt. Analisis, 18, 197–233 (1978).MathSciNetGoogle Scholar
  11. 11.
    E. B. Dynkin, “Semisimple subalgebras of semisimple Lie algebras,” Mat. Sb., 30, No. 2, 349–362 (1952).MathSciNetGoogle Scholar
  12. 12.
    R. Carter, “Conjugacy classes in the Weyl group [Russian translation],” in: A Seminar on Algebraic Groups, Mir, Moscow (1973), pp. 288–306.Google Scholar
  13. 13.
    Yu. I. Manin, Cubic Forms: Algebra, Geometry, and Arithmetic [in Russian], Nauka, Moscow (1972).Google Scholar
  14. 14.
    A. Borel and J. de Siebenthal, “Les sous-groupes fermés connexes de rang maximal des groupes de Lie clos,” Comm. Math. Helv., 23, No. 2, 200–221 (1949).zbMATHCrossRefGoogle Scholar
  15. 15.
    R. W. Carter, “Conjugacy classes in the Weyl group,” Compositio Math., 25, No. 1, 1–59 (1972).zbMATHMathSciNetGoogle Scholar
  16. 16.
    D. I. Deriziotis, “Centralizers of semisimple elements in a Chevalley group,” Comm. Algebra, 9, No. 19, 1997–2014 (1981).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. J. Idowu and A. O. Morris, “Some combinatorial results for Weyl groups,” Math. Proc. Cambridge Phil. Soc., 101, No. 3, 405–420 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A. L. Harebov and N. A. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus,” Comm. Algebra, 24, No. 1, 109–133 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    R. B. Howlett, “Normalizers of parabolic subgroups of reflection groups,” J. London Math. Soc., 21, No. 1, 62–80 (1980).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Golubitsky and B. Rothschild, “Primitive subalgebras of exceptional Lie algebras,” Pacific J. Math., 39, No. 2, 371–393 (1971).MathSciNetGoogle Scholar
  21. 21.
    N. A. Vavilov, “Intermediate subgroups in Chevalley groups,” in: Proceedings of the Conference on Groups of Lie Type and Their Geometries (Como-1993), Cambridge Univ. Press (1995), pp. 233–280.Google Scholar
  22. 22.
    N. A. Vavilov, “Do it yourself: structure theorems for Lie algebras of type El,” Zap. Nauchn. Semin. POMI, 281, 60–104 (2001).Google Scholar
  23. 23.
    N. Wallach, “On maximal subsystems of root systems,” Canad. J. Math., 30, No. 3, 555–574 (1968).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • N. A. Vavilov
    • 1
  • N. P. Kharchev
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations