Journal of Mathematical Sciences

, Volume 144, Issue 5, pp 4468–4483 | Cite as

Structure sets of triples of manifolds

  • Yurij V. Muranov
  • Rolando Jimenez


The structure set of a given manifold fits into a surgery exact sequence, which is the main tool for classification of manifolds. In the present paper, we describe relations between various structure sets and groups of obstructions which naturally arise for triples of manifolds. The main results are given by commutative braids and diagrams of exact sequences.


Manifold Exact Sequence Fundamental Group Commutative Diagram Spectrum Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bak and Yu. V. Muranov, “Splitting along submanifolds and L-spectra,” J. Math. Sci., 123, 4169–4183 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    W. Browder and G. R. Livesay, “Fixed point free involutions on homotopy spheres,” Bull. Amer. Math. Soc., 73, 242–245 (1967).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    W. Browder and F. Quinn, “A surgery theory for G-manifolds and stratified spaces,” in: Manifolds, Univ. of Tokyo Press (1975), pp. 27–36.Google Scholar
  4. 4.
    S. E. Cappell and J. L. Shaneson, “Pseudo-free actions. I,” in: Algebraic Topology (Aarhus, 1978 ), Lect. Notes Math., Vol. 763, Springer, Berlin (1979), pp. 395–447.CrossRefGoogle Scholar
  5. 5.
    M. M. Cohen, A Course in Simple-Homotopy Theory, Springer, New York (1973).zbMATHGoogle Scholar
  6. 6.
    I. Hambleton, “Projective surgery obstructions on closed manifolds,” in: Algebraic K-Theory, Proc. Conf., Oberwolfach 1980, Part II, Lect. Notes Math., Vol. 967, Springer, Berlin (1982), 101–131.Google Scholar
  7. 7.
    I. Hambleton and A. F. Kharshiladze, “A spectral sequence in surgery theory,” Russ. Acad. Sci. Sb. Math., 77, 1–9 (1994).CrossRefMathSciNetGoogle Scholar
  8. 8.
    I. Hambleton and E. Pedersen, Topological Equivalences of Linear Representations for Cyclic Groups, preprint, MPI (1997).Google Scholar
  9. 9.
    I. Hambleton, A. Ranicki, and L. Taylor, “Round L-theory,” J. Pure Appl. Algebra, 47, 131–154 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Lopez de Medrano, Involutions on Manifolds, Springer, Berlin (1971).zbMATHGoogle Scholar
  11. 11.
    W. Lück and A. A. Ranicki, “Surgery transfer,” in: Algebraic Topology and Transformation Groups, Proc. Conf., Göttingen/FRG 1987, Lect. Notes Math., Vol. 1361, Springer, Berlin (1988), pp. 167–246.CrossRefGoogle Scholar
  12. 12.
    W. Lück and A. A. Ranicki, “Surgery obstructions of fibre bundles,” J. Pure Appl. Algebra, 81, No. 2, 139–189 (1992).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Malešič, Yu. V. Muranov, and D. Repovš, “Splitting obstruction groups in codimension 2,” Mat. Zametki, 69, 52–73 (2001).Google Scholar
  14. 14.
    Yu. V. Muranov, “Splitting obstruction groups and quadratic extension of antistructures,” Russ. Acad. Sci. Izv. Math., 59, No. 6, 1207–1232 (1995).zbMATHMathSciNetGoogle Scholar
  15. 15.
    Yu. V. Muranov, “Splitting problem,” Proc. Steklov Inst. Math., 212, 115–137 (1996).MathSciNetGoogle Scholar
  16. 16.
    Yu. V. Muranov and R. Jimenez, “Transfer maps for triples of manifolds,” Mat. Zametki, to appear.Google Scholar
  17. 17.
    Yu. V. Muranov and A. F. Kharshiladze, “Browder-Livesay groups of Abelian 2-groups,” Math. USSR Sb., 70, 499–540 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Yu. V. Muranov and D. Repovš, “Groups of obstructions to surgery and splitting for a manifold pair,” Russ. Acad. Sci. Sb. Math., 188, No. 3, 449–463 (1997).zbMATHGoogle Scholar
  19. 19.
    Yu. V. Muranov, D. Repovš, and R. Jimenez, “Surgery spectral sequence and stratified manifolds,” in: Preprint of the University of Ljubljana, Vol. 42, No. 935, 2004, pp. 1–33.Google Scholar
  20. 20.
    Yu. V. Muranov, D. Repovš, and F. Spaggiari, “Surgery on triples of manifolds,” Sb. Math., 194, No. 8, 1251–1271 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    A. A. Ranicki, Exact Sequences in the Algebraic Theory of Surgery, Math. Notes, Vol. 26, Princeton Univ. Press, Princeton (1981).Google Scholar
  22. 22.
    A. A. Ranicki, “The total surgery obstruction,” in: Algebraic Topology (Aarhus, 1978 ), Lect. Notes Math., Vol. 763, Springer, Berlin (1979), pp. 275–316.CrossRefGoogle Scholar
  23. 23.
    A. A. Ranicki, Algebraic L-Theory and Topological Manifolds, Cambridge Tracts Math., Cambridge Univ. Press (1992).Google Scholar
  24. 24.
    R. Switzer, Algebraic Topology—Homotopy and Homology, Grund. Math. Wiss., Bd. 212, Springer Berlin (1975).Google Scholar
  25. 25.
    C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, London (1970). Second Edition: A. A. Ranicki, ed., AMS, Providence (1999).Google Scholar
  26. 26.
    S. Weinberger, The Topological Classification of Stratified Spaces, The University of Chicago Press, Chicago (1994).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Yurij V. Muranov
    • 1
  • Rolando Jimenez
    • 2
  1. 1.Department of Informatic and ManagementVitebsk Institute of Modern KnowledgeVitebskBelarus
  2. 2.Instituto de Matematicas, UNAMAvenida Universidad S/NCuernavacaMexico

Personalised recommendations