Advertisement

Journal of Mathematical Sciences

, Volume 143, Issue 4, pp 3183–3197 | Cite as

Vladimir Alexandrovich Kondratiev on the 70th anniversary of his birth

Article

Keywords

Elliptic Equation Parabolic Equation Dirichlet Problem Elliptic Operator Unbounded Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

List Of Publications Of V. A. Kondratiev

  1. 1.
    V. A. Kondratiev, “Elementary derivation of a necessary and sufficient condition of nonoscillation for solutions of a second-order linear differential equation,” Usp. Mat. Nauk, 12, No. 3, 159–160 (1957).Google Scholar
  2. 2.
    V. A. Kondratiev, “Sufficient conditions of oscillation and nonoscillation for solutions of the equation y″ + p(x)y = 0,” Dokl. Akad. Nauk SSSR, 113, No. 4, 742–745 (1957).zbMATHMathSciNetGoogle Scholar
  3. 3.
    V. A. Kondratiev, “On nonoscillation of solutions of linear differential equations of the third and fourth order,” Dokl. Akad. Nauk SSSR, 118, No. 1, 22–24 (1958).zbMATHMathSciNetGoogle Scholar
  4. 4.
    V. A. Kondratiev, “On zeroes of solutions of the equation y″ + p(x)y = 0,” Dokl. Akad. Nauk SSSR, 120, No. 6, 1180–1182 (1958).zbMATHMathSciNetGoogle Scholar
  5. 5.
    V. A. Kondratiev, “On oscillation of solutions of linear equations of the third and fourth order,” Tr. Mosk. Mat. Obshch., 8, 259–281 (1959).Google Scholar
  6. 6.
    V. A. Kondratiev, “Extension of linear differential operators,” Dokl. Akad. Nauk SSSR, 125, No. 3, 479–481 (1959).MathSciNetGoogle Scholar
  7. 7.
    V. A. Kondratiev, “On oscillation of solutions of the equation y″ + p(x)y = 0,” Tr. Mosk. Mat. Obshch., 10, 419–436 (1961).Google Scholar
  8. 8.
    V. A. Kondratiev, “On solvability of the first boundary-value problem for elliptic equations,” Dokl. Akad. Nauk SSSR, 136, No. 4, 771–774 (1961).Google Scholar
  9. 9.
    V. A. Kondratiev, “Estimates near the boundary for derivatives of solutions of elliptic equations,” Dokl. Akad. Nauk SSSR, 146, No. 1, 22–25 (1962).MathSciNetGoogle Scholar
  10. 10.
    V. A. Kondratiev, “Boundary-value problems for elliptic equations in conical domains,” Dokl. Akad. Nauk SSSR, 153, No. 1, 27–29 (1963).MathSciNetGoogle Scholar
  11. 11.
    V. A. Kondratiev, “General boundary-value problems for parabolic equations in a closed domain,” Dokl. Akad. Nauk SSSR, 163, No. 2, 285–288 (1965).MathSciNetGoogle Scholar
  12. 12.
    V. A. Kondratiev, “Boundary-value problems for parabolic equations in closed domains,” Tr. Mosk. Mat. Obshch., 15, 400–451 (1966).Google Scholar
  13. 13.
    V. A. Kondratiev and Yu. V. Egorov, “On a problem with oblique derivative,” Dokl. Akad. Nauk SSSR, 170, No. 4, 770–772 (1966).MathSciNetGoogle Scholar
  14. 14.
    V. A. Kondratiev, “Asymptotic behavior of the solution of the Navier-Stokes equation near an angular point on the boundary,” Prikl. Mat. Mekh., 31, No. 1, 119–123 (1967).Google Scholar
  15. 15.
    V. A. Kondratiev, “On the solvability of the first boundary-value problem for strongly elliptic equations,” Tr. Mosk. Mat. Obshch., 16, 293–318 (1967).Google Scholar
  16. 16.
    V. A. Kondratiev, “Boundary-value problems for elliptic equations in domains with conical or angular points,” Tr. Mosk. Mat. Obshch., 16, 209–292 (1967).Google Scholar
  17. 17.
    V. A. Kondratiev and S. D. Eidelman, “On the character of solutions of linear evolutionary systems with elliptic spatial part,” Dokl. Akad. Nauk SSSR, 189, No. 3, 468–471 (1969).MathSciNetGoogle Scholar
  18. 18.
    V. A. Kondratiev and Yu. V. Egorov, “On a problem with oblique derivative,” Mat. Sb., 78, 148–176 (1969).MathSciNetGoogle Scholar
  19. 19.
    V. A. Kondratiev and S. D. Eidelman, “On properties of positive solutions of evolutionary hypoelliptic equations,” Dokl. Akad. Nauk SSSR, 184, No. 5, 1027–1030 (1969).MathSciNetGoogle Scholar
  20. 20.
    V. A. Kondratiev, “Singularities of a solution of Dirichlet’s problem for a second-order elliptic equation in a neighborhood of an edge,” Differ. Uravn., No. 13, 1411–1415 (1970).Google Scholar
  21. 21.
    V. A. Kondratiev, “On the smoothness of solutions of the Dirichlet problem for second-order elliptic equations in piecewise-smooth domains,” Differ. Uravn., 6, No. 10, 1831–1843 (1970).Google Scholar
  22. 22.
    V. A. Kondratiev and S. D. Eidelman, “On the uniqueness of a solution of the Cauchy problem for linear evolutionary systems with constant coefficients,” Dokl. Akad. Nauk SSSR, 190, No. 5, 1026–1029 (1970).MathSciNetGoogle Scholar
  23. 23.
    V. A. Kondratiev and S. D. Eidelman, “On properties of solutions of linear evolutionary equations with elliptic spatial part,” Mat. Sb., 81, No. 3, 398–429 (1970).MathSciNetGoogle Scholar
  24. 24.
    V. A. Kondratiev and S. D. Eidelman, “On the region of positivity of solutions of elliptic equations,” Mat. Zametki, 9, No. 1, 83–87 (1971).MathSciNetGoogle Scholar
  25. 25.
    V. A. Kondratiev, T. G. Pletneva, and S. D. Eidelman, “On positive solutions of elliptic equations,” Mat. Sb., 85, No. 4, 586–609 (1971).MathSciNetGoogle Scholar
  26. 26.
    V. A. Kondratiev, T. G. Pletneva, and S. D. Eidelman, “On positive solutions of partial differential equations in a neighborhood of a smooth noncharacteristic hypersurface,” Dokl. Akad. Nauk SSSR, 204, No. 2, 279–282 (1972).MathSciNetGoogle Scholar
  27. 27.
    V. A. Kondratiev, T. G. Pletneva, and S. D. Eidelman, “Positive solutions of linear evolutionary quasi-elliptic equations,” Mat. Sb., 89, No. 1, 16–45 (1972).MathSciNetGoogle Scholar
  28. 28.
    V. A. Kondratiev and V. S. Samovol, “On linearization of an autonomous system in a neighborhood of a nodal singular point,” Mat. Zametki, 14, No. 6, 833–842 (1973).MathSciNetGoogle Scholar
  29. 29.
    V. A. Kondratiev, “Cauchy’s problem with characteristic points on the initial surface,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 1, 84–92 (1974).Google Scholar
  30. 30.
    V. A. Kondratiev and S. D. Eidelman, “On biharmonic functions which are positive in a semi-strip,” Mat. Zametki, 15, No. 1, 121–128 (1974).MathSciNetGoogle Scholar
  31. 31.
    V. A. Kondratiev and S. D. Eidelman, “Positive solutions of linear partial differential equations,” Tr. Mosk. Mat. Obshch., 31, 85–106 (1974).Google Scholar
  32. 32.
    V. A. Kondratiev and L. A. Bagirov, On elliptic equations in R n,” Differ. Uravn., 11, No. 3, 498–504 (1975).Google Scholar
  33. 33.
    V. A. Kondratiev and T. M. Kerimov, On the spectrum of a second-order elliptic operator,” Mat. Zametki, 20, No. 3, 351–358 (1976).MathSciNetGoogle Scholar
  34. 34.
    V. A. Kondratiev, “On summability of positive solutions of differential equations of arbitrary order in a neighborhood of the characteristic manifold,” Mat. Sb., 99, No. 4, 582–593 (1976).MathSciNetGoogle Scholar
  35. 35.
    V. A. Kondratiev, “Singularities of the solution of the Dirichlet problem for a second-order elliptic equation in a neighborhood of an edge,” Differ. Uravn., 13, No. 11, 2026–2032 (1977).Google Scholar
  36. 36.
    V. A. Kondratiev and S. D. Eidelman, “Positive solutions of linear systems of partial differential equations,” Tr. Sem. S. L. Soboleva, No. 2, 172–173 (1977).Google Scholar
  37. 37.
    V. A. Kondratiev and S. D. Eidelman, “On nonnegative solutions of overdetermined systems of partial differential equations,” Dokl. Akad. Nauk SSSR, 237, No. 3, 513–516 (1977).MathSciNetGoogle Scholar
  38. 38.
    V. A. Kondratiev and S. D. Eidelman, “On the inclusion of solutions of quasielliptic equations in L p,” Mat. Zametki, 21, No. 4, 519–524 (1977).MathSciNetGoogle Scholar
  39. 39.
    V. A. Kondratiev and L. A. Bagirov, “A class of elliptic equations in R n,” Tr. Sem. S. L. Soboleva, No. 2, 5–16 (1978).Google Scholar
  40. 40.
    V. A. Kondratiev and S. D. Eidelman, “Properties of positive solutions of a system of partial differential equations,” in: Proc. of the All-Union Conf. on Partial Differential Equations [in Russian], Izd. Mosk. Univ. (1978), pp. 131–134.Google Scholar
  41. 41.
    V. A. Kondratiev, “On elliptic boundary-value problems,” in: Theory of Operators in Functional Spaces [in Russian], Izd. Inst. Mat. Bel. SSR, Minsk (1978), p. 164.Google Scholar
  42. 42.
    V. R. Vainberg, Yu. V. Egorov, and V. A. Kondratiev, “A computational method for charged particle flux in magnetic protection systems,” Dosimetry Problems, Atomizdat, Moscow, No. 17, 149–154 (1978).Google Scholar
  43. 43.
    V. A. Kondratiev and S. D. Eidelman, “Conditions on the boundary surface in the theory of elliptic boundary-value problems,” Dokl. Akad. Nauk SSSR, 246, No. 4, 812–815 (1979).MathSciNetGoogle Scholar
  44. 44.
    V. A. Kondratiev, “On solutions of the hyperbolic Cauchy problem with characteristic points on the initial surface,” Tr. Sem. Petrovsk., No. 5, 97–104 (1979).Google Scholar
  45. 45.
    V. A. Kondratiev and V. A. Nikishkin, “On positive solutions of the equations y″ = p(x)y k,” in: Some Problems in the Qualitative Theory of Differential Equations and Motion Control [in Russian], Izd. Mordovsk. Gos. Univ., Saransk (1980), pp. 134–141.Google Scholar
  46. 46.
    V. A. Kondratiev, O. A. Oleinik, and I. Kopaček, “Asymptotic properties of solutions of the biharmonic equation,” Differ. Uravn., 17, No. 10, 1886–1899 (1981).Google Scholar
  47. 47.
    V. A. Kondratiev, O. A. Oleinik, and I. Kopaček, “Estimates for solutions of second-order elliptic equations and the system of elasticity in a neighborhood of a boundary point,” Usp. Mat. Nauk, 36, No. 1, 211–212 (1981).Google Scholar
  48. 48.
    V. A. Kondratiev and V. S. Samovol, “Some asymptotic properties of solutions of equations of Emden-Fowler type,” Differ. Uravn., 17, No. 4, 749–750 (1981).Google Scholar
  49. 49.
    V. A. Kondratiev, O. A. Oleinik, and I. Kopaček, “On the behavior of weak solutions of second-order elliptic equations and the system of elasticity in a neighborhood of a boundary point,” Tr. Sem. Petrovsk., No. 2, 135–152 (1982).Google Scholar
  50. 50.
    V. A. Kondratiev and O. A. Oleinik, “Estimates for solutions of the Dirichlet problem in a neighbourhood of an irregular boundary point and in a neighbourhood of infinity. Saint-Venant’s principle,” Proc. Roy. Soc. Edinburgh Sect. A., 93, No. 3–4, 327–343 (1982).MathSciNetGoogle Scholar
  51. 51.
    Yu. V. Egorov and V. A. Kondratiev, “An estimate for the first eigenvalue of a self-adjoint elliptic operator,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 3, 46–52 (1983).Google Scholar
  52. 52.
    V. A. Kondratief, Yu. V. Egorov, and O. A. Oleinik, “Precise Hölder estimates for weak solutions of the biharmonic equation, the Navier-Stokes system, and the von Karman system in nonsmooth two-dimensional domains,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 6, 22–39 (1983).Google Scholar
  53. 53.
    V. A. Kondratiev and O. A. Oleinik, “Boundary-value problems for partial differential equations in nonsmooth domains,” Usp. Mat. Nauk, 38, No. 2, 3–76 (1983).Google Scholar
  54. 54.
    V. A. Kondratiev and O. A. Oleinik, “Uniqueness theorems for solutions of exterior boundary-value problems and an analogue of the Saint-Venant principle,” Usp. Mat. Nauk, 39, No. 4, 165–166 (1984).Google Scholar
  55. 55.
    Yu. V. Egorov and V. A. Kondratiev, “An estimate for the smallest eigenvalue of an elliptic operator,” Differ. Uravn., 20, No. 8, 1397–1403 (1984).Google Scholar
  56. 56.
    Yu. V. Egorov and V. A. Kondratiev, “Estimates for the first eigenvalue of the Sturm-Liouville problem,” Usp. Mat. Nauk, 39, No. 2, 151–152 (1984).zbMATHGoogle Scholar
  57. 57.
    V. A. Kondratiev, O. A. Oleinik, and I. Kopaček, “Best possible Hölder estimates and the precise Saint-Venant’s principle for solutions of the biharmonic equation,” Tr. Mat. Inst. AN Ukr. SSR, 160, 91–106 (1984).Google Scholar
  58. 58.
    V. A. Kondratiev and O. A. Oleinik, “On a problem of Sanchez-Palencia,” Usp. Mat. Nauk, 39, No. 5, 257 (1984).Google Scholar
  59. 59.
    V. A. Kondratiev and Yu. V. Egorov, “Some estimates for eigenfunctions of an elliptic operator,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 4, 32–34 (1985).Google Scholar
  60. 60.
    V. A. Kondratiev and O. A. Oleinik, “Time-periodic solutions of a second-order parabolic equation in exterior domains,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 4, 38–47 (1985).Google Scholar
  61. 61.
    V. A. Kondratiev and V. M. Uroev, “Smoothness of solutions of a boundary-value problem for elliptic equations with parameters,” Differ. Uravn., 21, No. 80, 1407–1412 (1985).Google Scholar
  62. 62.
    V. A. Kondratiev and O. A. Oleinik, “Precise Hölder exponents for weak solutions of the Dirichlet problem for the biharmonic equation and their dependence on the geometry of the domain,” Usp. Mat. Nauk, 40, No. 4, 173–174 (1985).Google Scholar
  63. 63.
    V. A. Kondratiev and O. A. Oleinik, “On the asymptotic behavior of solutions of partial differential systems,” Usp. Mat. Nauk, 40, No. 5, 306 (1985).Google Scholar
  64. 64.
    V. A. Kondratiev, I. Kopaček, and O. A. Oleinik, “Best Hölder exponents for weak solutions of the Dirichlet problem for a second-order elliptic equation,” Mat. Sb., 131, No. 1, 113–125 (1986).Google Scholar
  65. 65.
    V. A. Kondratiev and E. M. Landis, “Semilinear second-order equations with nonnegative characteristic form,” Mat. Zametki, 44, No. 4, 457–468 (1986).Google Scholar
  66. 66.
    V. A. Kondratiev and O. A. Oleinik, “Estimates near the boundary for second-order derivatives of solutions of the Dirichlet problem for the biharmonic equation,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8)., 80, No. 7, 525–529 (1986).zbMATHMathSciNetGoogle Scholar
  67. 67.
    V. A. Kondratiev, “On nonnegative solutions of second-order elliptic equations with divergent principal part,” Usp. Mat. Nauk, 41, No. 5, 209 (1986).Google Scholar
  68. 68.
    V. A. Kondratiev and O. A. Oleinik, “Asymptotic properties of solutions of the elasticity system,” in: Application of Multiple Scaling in Mechanics, Masson, Paris (1987), pp. 188–205.Google Scholar
  69. 69.
    V. A. Kondratiev and O. A. Oleinik, “Asymptotics at infinity of solutions of second-order elliptic equations with a finite Dirichlet integral,” Tr. Sem. Petrovsk., No. 12, 149–163 (1987).Google Scholar
  70. 70.
    V. A. Kondratiev and O. A. Oleinik, “Estimates for the second derivatives of the solution of the Dirichlet problem for the biharmonic equation in a neighborhood of angular points on the boundary,” Usp. Mat. Nauk, 42, No. 2, 231–232 (1987).Google Scholar
  71. 71.
    V. A. Kondratiev and Yu. V. Egorov, “Estimates for eigenfunctions of elliptic operators with constant coefficients,” Tr. Sem. Petrovsk., No. 12, 229–237 (1987).Google Scholar
  72. 72.
    V. A. Kondratiev and Yu. V. Egorov, “Estimates for the number of points of the negative spectrum of the Schrödinger operator,” Mat. Sb., 134, No. 4, 556–570 (1987).Google Scholar
  73. 73.
    V. A. Kondratiev and O. A. Oleinik, “On the uniqueness of solutions of boundary-value problems in unbounded domains and isolated singularities of solutions of the system of elasticity and second-order elliptic equations,” Usp. Mat. Nauk, 42, No. 4, 189–190 (1987).Google Scholar
  74. 74.
    V. A. Kondratiev and O. A. Oleinik, “Current problems of mathematical physics,” in: Proc. All-Union Sympos., Vol. 1, Mezniereba, Tbilisi (1987), pp. 35–63.Google Scholar
  75. 75.
    V. A. Kondratiev and O. A. Oleinik, “On the behaviour at infinity of solutions of elliptic systems with finite energy integral,” Arch. Rational Mech. Anal., 99, No. 1, 75–89 (1987).zbMATHMathSciNetCrossRefGoogle Scholar
  76. 76.
    V. A. Kondratiev and E. M. Landis, “Qualitative theory of linear second-order partial differential equations,” in: Advances in Science and Technology. Modern Problems in Mathematics. Fundamental Trends [in Russian], Vol. 32, VINITI, Moscow (1988), pp. 99–215.Google Scholar
  77. 77.
    Yu. V. Egorov and V. A. Kondratiev, “Some estimates for eigenfunctions of an elliptic operator,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 4, 32–34 (1988).Google Scholar
  78. 78.
    V. A. Kondratiev and O. A. Oleinik, “Boundary-value problems for the system of elasticity in unbounded domains. Korn’s inequalities,” Usp. Mat. Nauk, 43, No. 5, 55–98 (1988).Google Scholar
  79. 79.
    V. A. Kondratiev and E. M. Landis, “On qualitative characteristics of solutions of a second-order nonlinear equation,” Mat. Sb., 135, No. 3, 346–359 (1988).Google Scholar
  80. 80.
    U. V. Egorov and V. A. Kondratiev, “On the negative spectrum of an elliptic operator,” in: Symp. “Partial Differential Equations,” Teubner-Texte zur Mathematik, Holzhau (1988), pp. 63–72.Google Scholar
  81. 81.
    M. V. Borsuk and V. A. Kondratiev, “Behavior of the solution of the Dirichlet problem for a second-order quasilinear elliptic equation near an angular point,” Differ. Uravn., 24, No. 10, 1778–1784 (1988).Google Scholar
  82. 82.
    V. A. Kondratiev and E. M. Landis, “Semilinear second-order equations with nonnegative characteristic form,” Mat. Zametki, 44, No. 4, 457–468 (1988).Google Scholar
  83. 83.
    L. A. Bagirov and V. A. Kondratiev, “On the regularity of solutions of higher-order elliptic equations with continuous coefficients,” Usp. Mat. Nauk, 44, No. 1, 185–186 (1989).Google Scholar
  84. 84.
    V. A. Kondratiev and O. A. Oleinik, “Dependence of the constants in Korn’s inequality on the parameters characterizing the geometry of the domain,” Usp. Mat. Nauk, 44, No. 6, 157–158 (1989).Google Scholar
  85. 85.
    V. A. Kondratiev and O. A. Oleinik, “On Korn’s inequalities,” C. R. Acad. Sci. Paris. Sér. 1, 308, 483–487 (1989).zbMATHMathSciNetGoogle Scholar
  86. 86.
    V. A. Kondratiev and V. A. Nikishkin, “Boundary estimates for solutions of a singular problem for a semilinear elliptic equation,” in: Applications of New Methods in Analysis [in Russian], Izd. Voronezh. Univ., Voronezh (1989), pp. 72–79.Google Scholar
  87. 87.
    V. A. Kondratiev and V. A. Nikishin, “Uniqueness of solutions of a singular boundary-value problem for semilinear equations,” Dokl. Sem. I. N. Vekua, Mezniereba, Tbilisi (1989), 4, No. 1, 43–52.Google Scholar
  88. 88.
    Yu. V. Egorov and V. A. Kondratiev, “A numerical differentiation problem,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 3, 80–81 (1989).Google Scholar
  89. 89.
    V. A. Kondratiev, V. A. Kozlov, and V. G. Maz’ja, “On the alternating character and the absence of ’strong’ zeros of solutions of elliptic equations,” Izv. Akad. Nauk SSSR, Ser. Mat., 53, No. 2, 328–344 (1989).Google Scholar
  90. 90.
    M. I. Vishik, Yu. S. Il’yashenko, A. S. Kalashnikov, V. A. Kondratiev, S. N. Kruzhkov, E. M. Landis, V. M. Millionschikov, O. A. Oleinik, A. F. Filippov, and M. A. Shubin, “Some open problems in the theory of differential equations and mathematical physics,” Usp. Mat. Nauk, 44, No. 4, 191–202 (1989).Google Scholar
  91. 91.
    V. A. Kondratiev and O. A. Oleinik, “Some generalizations of Korn’s inequalities and their applications,” Usp. Mat. Nauk, 44, No. 4, 205 (1989).Google Scholar
  92. 92.
    V. A. Kondratiev and E. M. Landis, “The qualitative theory of second-order partial differential equations,” in: Encyclopedia of Mathematical Sciences, Vol. 31, Springer, Berlin (1989), pp. 99–215.Google Scholar
  93. 93.
    V. A. Kondratiev and O. A. Oleinik, “Hardy and Korn inequalities for a class of unbounded domains and their applications in elasticity,” Dokl. Akad. Nauk SSSR, 312, No. 6, 1299–1304 (1990).Google Scholar
  94. 94.
    Yu. V. Egorov and V. A. Kondratiev, “On the negative spectrum of an elliptic operator,” Mat. Sb., 181, No. 2, 147–166 (1990).Google Scholar
  95. 95.
    V. A. Kondratiev and V. A. Nikishin, “On boundary asymptotics of the solution of a singular boundary-value problem for a semilinear elliptic equation,” Differ. Uravn., 26, No. 3, 465–468 (1990).Google Scholar
  96. 96.
    Yu. V. Egorov and V. A. Kondratiev, “On the negative spectrum of an elliptic operator,” Tr. Mat. Inst. Steklova, 192, 61–67 (1990).zbMATHGoogle Scholar
  97. 97.
    V. A. Kondratiev and O. A. Oleinik, “Hardy’s and Korn’s type inequalities and their applications,” Rend. Mat. (7), 10, Fasc. 3, 641–666 (1990).zbMATHMathSciNetGoogle Scholar
  98. 98.
    V. A. Kondratiev, O. A. Oleinik, and I. Kopaček, “On the character of continuity on the boundary of a nonsmooth domain for weak solutions of the Dirichlet problem for the biharmonic equation,” Mat. Sb., 181, No. 4, 564–575 (1990).Google Scholar
  99. 99.
    Yu. V. Egorov and V. A. Kondratiev, “An estimate for the first eigenvalue of the Sturm-Liouville operator,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 6, 75–78 (1990).Google Scholar
  100. 100.
    L. A. Bagirov and V. A. Kondratiev, “On the asymptotics of solutions of differential equations in Hilbert space,” Mat. Sb., 182, No. 4, 508–525 (1991).zbMATHGoogle Scholar
  101. 101.
    Yu. V. Egorov and V. A. Kondratiev, “An estimate for the first eigenvalue of the Sturm-Liouville operator,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 6, 5–11 (1991).Google Scholar
  102. 102.
    V. A. Kondratiev and O. A. Oleinik, “Korn’s inequalities and their applications. Nonlinear boundary-value problems,” Sb. AN Ukr. SSR, 3, 35–42 (1991).Google Scholar
  103. 103.
    V. A. Kondratiev, “Schauder-type estimates of solutions of second-order elliptic systems in divergence form in non-regular domains,” Comm. Partial Differential Equations, 16, No. 12, 1857–1878 (1991).MathSciNetGoogle Scholar
  104. 104.
    V. A. Kondratiev, “On the solutions of semilinear equations in non-smooth domains,” in: Continuum Mechanics and Related Problems of Analysis, Mezniereba, Tbilisi (1991), pp. 57–73.Google Scholar
  105. 105.
    V. A. Kondratiev and O. A. Oleinik, “A new approach to the problems of Bussinesque and Ceruti for the system of elasticity,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 1, 12–23 (1991).Google Scholar
  106. 106.
    Yu. V. Egorov and V. A. Kondratiev, “An estimate for the minimal eigenvalue of the Sturm-Liouville operator,” Proc. of the Sem. of the Vekua Institute of Applied Mathematics, Mezniereba, Tbilisi, 5, No. 3, 76–79 (1991).Google Scholar
  107. 107.
    V. A. Kondratiev, “On qualitative characteristics of solutions of semilinear elliptic equations,” Tr. Sem. Petrovsk., No. 16, 186–190 (1992).Google Scholar
  108. 108.
    Yu. V. Egorov and V. A. Kondratiev, “On the negative spectrum of an elliptic operator,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 2, 88–91 (1992).Google Scholar
  109. 109.
    V. A. Kondratiev and O. A. Oleinik, “Some results for nonlinear elliptic equations in cylindrical domains,” in: Operator Calculus and Spectral Theory, Birkhäuser, Basel (1992), pp. 185–195.Google Scholar
  110. 110.
    V. A. Kondratiev and O. A. Oleinik, “On estimates for the eigenvalues in some elliptic problems,” in: Operator Calculus and Spectral Theory, Birkhäuser, Basel (1992), pp. 51–60.Google Scholar
  111. 111.
    V. A. Kondratiev and O. A. Oleinik, “On asymptotic behaviour of solutions of some nonlinear elliptic equations in unbounded domains,” in: Partial Differential Equations and Related Subjects, Pitman Research Notes in Math. Ser., 1992, pp. 169–196.Google Scholar
  112. 112.
    V. A. Kondratiev, “Asymptotics of solutions of the Navier-Stokes equation in a neighborhood of an angle,” Prikl. Mekh. Tekh. Fiz., No. 10, 38–40 (1992).Google Scholar
  113. 113.
    Yu. V. Alkhutov and V. A. Kondratiev, “Solvability of the Dirichlet problem for second-order elliptic equations in convex domains,” Differ. Uravn., 28, No. 5, 806–818 (1992).Google Scholar
  114. 114.
    U. V. Egorov and V. A. Kondratiev, “On the negative spectrum of an elliptic operator,” in: Symp. “Analysis on Manifolds with Singularities,” Teubner-Texte zur Mathematik, Bd. 131, Stuttgart (1992), pp. 51–56.Google Scholar
  115. 115.
    Yu. V. Egorov and V. A. Kondratiev, “Estimates of the negative spectrum of an elliptic operator,” Amer. Math. Soc. Transl. (2), 150, 111–140 (1992).Google Scholar
  116. 116.
    V. A. Kondratiev and O. A. Oleinik, “Boundary-value problems for nonlinear elliptic equations in cylindrical domains,” J. Partial Differ. Eqs., 6, No. 1, 10–16 (1993).zbMATHMathSciNetGoogle Scholar
  117. 117.
    V. A. Kondratiev, “Invertibility of Schrödinger operators in weighted spaces,” Russ. J. Math. Phys., 1, No. 4, 465–482 (1993).Google Scholar
  118. 118.
    V. A. Kondratiev, “On solutions of weakly nonlinear elliptic equations near a conical point of the boundary,” Differ. Uravn., 29, No. 2, 298–306 (1993).MathSciNetGoogle Scholar
  119. 119.
    V. A. Kondratiev and S. D. Eidelman, “On positive solutions of some quasilinear equations,” Dokl. Akad. Nauk SSSR, 331, No. 3, 278–280 (1993).Google Scholar
  120. 120.
    V. A. Kondratiev and S. D. Eidelman, “Qualitative characteristics of positive solutions of linear and quasilinear partial differential equations of an arbitrary order,” in: Proc. of the Fourth Crimean Autumn Mathematical School-Symposium CROMSh-3 “Spectral and Evolutionary Problems,” No. 3, Simferopol (1993), pp. 110–119.Google Scholar
  121. 121.
    V. N. Aref’ev and V. A. Kondratiev, “Asymptotic behavior of solutions of the second boundary-value problem for nonlinear parabolic equations,” Differ. Uravn., 29, No. 12, 2104–2116 (1993).Google Scholar
  122. 122.
    L. A. Bagirov and V. A. Kondratiev, “On the properties of generalized solutions of elliptic equations,” Russ. J. Math. Phys., 1, No. 2, 139–164 (1993).zbMATHGoogle Scholar
  123. 123.
    V. A. Kondratiev, “On asymptotics of solutions of nonlinear elliptic equations in a neighbourhood of a conic point of the boundary,” in: Partial Differential Equations, Potsdam University (1993).Google Scholar
  124. 124.
    U. V. Egorov and V. A. Kondratiev, “On a Lagrange problem and its generalizations,” in: Equations aux derivees partielles, Epose XII Centre de Mathématiques École Polytechnique, Preprint (1993).Google Scholar
  125. 125.
    V. A. Kondratiev, “Invertibility of Schrödinger operators in weighted spaces,” Russ. J. Math. Phys., 1, No. 4, 465–482 (1993).Google Scholar
  126. 126.
    U. V. Egorov and V. A. Kondratiev, “On the Lagrange problem,” C. R. Acad. Sci. Paris. Sér. 1, 317, 1149–1153 (1993).zbMATHMathSciNetGoogle Scholar
  127. 127.
    V. A. Kondratiev and V. A. Nikishin, “On isolated singularities of solutions of equations of Emden-Fowler type,” Differ. Uravn., 29, No. 6, 1025–1038 (1993).Google Scholar
  128. 128.
    V. A. Kondratief and A. A. Kon’kov, “Properties of solutions of a class on nonlinear second-order equations,” Mat. Sb., 185, No. 9, 81–94 (1994).Google Scholar
  129. 129.
    S. D. Eidelman and V. A. Kondratiev, “On positive solutions of the Emden-Fowler quasilinear system of arbitrary order,” Russ. J. Math. Phys., 2, No. 4, 535–540 (1994).zbMATHGoogle Scholar
  130. 130.
    V. A. Kondratiev and S. D. Eidelman, “On positive solutions of quasilinear second-order elliptic equations,” Dokl. Akad. Nauk SSSR, 334, No. 4, 427–429 (1994).Google Scholar
  131. 131.
    V. A. Kondratiev and L. Veron, “Asymptotic homogenization of solutions of some nonlinear parabolic or elliptic equations,” Université Francous Rabelais-Tours, Preprint No. 76/94 (1994), pp. 1–56.Google Scholar
  132. 132.
    V. A. Kondratiev and V. A. Nikishin, “On asymptotics near a piecewise-smooth boundary of singular solutions of semilinear elliptic equations,” Mat. Zametki, 56, No. 1, 50–56 (1994).MathSciNetGoogle Scholar
  133. 133.
    Yu. V. Egorov and V. A. Kondratiev, “On some estimates of the eigenvalues of elliptic operators,” in: Proc. of the Max Planck-Arbeitsgruppe, Teubner, Potsdam (1994), pp. 1–54.Google Scholar
  134. 134.
    V. A. Kondratiev and O. A. Oleinik, “On the behaviour of solutions of a class of nonlinear elliptic second-order equations in a neighborhood of a conic point of the boundary,” in: Boundary-Value Problems and Integral Equations in Nonsmooth Domains, Lect. Notes Pure Appl. Math., Vol. 167 (1995), pp. 151–161.Google Scholar
  135. 135.
    U. V. Egorov and V. A. Kondratiev, “On moments of negative eigenvalues of an elliptic operator,” Math. Nachr., 174, 73–79 (1995).zbMATHMathSciNetCrossRefGoogle Scholar
  136. 136.
    Yu. V. Egorov and V. A. Kondratiev, “On estimates of the minimal eigenvalue in the problem of stability of a column,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 2, 7–15 (1995).Google Scholar
  137. 137.
    V. A. Kondratiev and O. A. Oleinik, “An approach to the study of asymptotic properties of solutions of nonlinear elliptic equations in cylindrical domains,” Usp. Mat. Nauk, 50, No. 4, 149 (1995).Google Scholar
  138. 138.
    V. A. Kondratiev and O. A. Oleinik, “On the behavior at infinity of solutions of a class of nonlinear elliptic equations in cylindrical domains,” Dokl. Ross. Akad. Nauk, 341, No. 4, 446–449 (1995).Google Scholar
  139. 139.
    V. A. Kondratiev, “On the asymptotics of solutions of weakly nonlinear elliptic equations,” in: Differential Equations and Their Applications [in Russian], Izd. Samarsk. Gos. Tekhn. Univ., Samara (1995).Google Scholar
  140. 140.
    V. A. Kondratiev, “On asymptotics of solutions of parabolic and elliptic systems,” in: Summary of the Conf. on Partial Differential Equations. Max-Planck-Institut für Mathematik, Teubner, Bonn (1995), p. 3.Google Scholar
  141. 141.
    V. A. Kondratiev and V. A. Tarakanov, “On singularity of temperature gradients in a neighborhood of a sharp cut in a compound body,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 6, 70–72 (1995).Google Scholar
  142. 142.
    G. V. Grishina and V. A. Kondratiev, “On the asymptotic behavior of solutions of some semilinear parabolic equations in cylindrical domains,” in: Spectral and Evolutional Problems, Proc. of the Fourth Crimean Autumn Mathematical School-Symposium (CROMSH-IV), Simferopol (1995).Google Scholar
  143. 143.
    V. A. Kondratiev and V. A. Nikishin, “On positive solutions of a semilinear equation,” J. Math. Sci., 80, No. 5, 2084–2092 (1996).MathSciNetCrossRefGoogle Scholar
  144. 144.
    U. V. Egorov and V. A. Kondratiev, On Estimates of the First Eigenvalue in Some Sturm-Liouville Problems, Université Paul Sabatier, UFR MIG, Toulouse, Preprint (1996), pp. 1–71.Google Scholar
  145. 145.
    V. A. Kondratiev and O. A. Oleinik, “On asymptotics of solutions of nonlinear second-order elliptic equations in cylindrical domains,” in: Partial Differential Equations and Functional Analysis, Birkhäuser (1996), pp. 160–173.Google Scholar
  146. 146.
    Yu. V. Egorov and V. A. Kondratiev, “Estimates of the first eigenvalue for some Sturm-Liouville problems,” Usp. Mat. Nauk, 51, No. 3, 73–144 (1996).Google Scholar
  147. 147.
    V. A. Kondratiev and Yu. V. Egorov, “On spectral theory of elliptic operators,” Operator Theory: Advances and Applications, 89, 1–325 (1996).MathSciNetGoogle Scholar
  148. 148.
    U. V. Egorov and V. A. Kondratiev, “On a nonlinear boundary problem for a heat equation,” C. R. Acad. Sci. Paris. Sér. 1, 322, 55–58 (1996).zbMATHMathSciNetGoogle Scholar
  149. 149.
    Yu. V. Egorov and V. A. Kondratiev, “On moments of elliptic operators,” Dokl. Ross. Akad. Nauk, 5, 585–587 (1996).Google Scholar
  150. 150.
    Yu. V. Egorov and V. A. Kondratiev, “On the optimal shape of a column,” Dokl. Ross. Akad. Nauk, 6, 727–730 (1996).Google Scholar
  151. 151.
    V. A. Kondratiev and O. A. Oleinik, “On large-time asymptotics of solutions of nonlinear evolutionary equations and systems,” Usp. Mat. Nauk, 51, No. 5, 159–160 (1996).Google Scholar
  152. 152.
    V. A. Kondratiev, “On asymptotics of solutions of parabolic and elliptic equations in unbounded domains,” in: Abstracts of the Int. Colloquium of Differential Equations, Plovdiv (1996), p. 120.Google Scholar
  153. 153.
    Yu. V. Egorov and V. A. Kondratiev, “Estimates of the first eigenvalue for the Dirichlet problem,” C. R. Acad. Sci. Paris. Sér. 1, 321, No. 2, 129–131 (1996).MathSciNetGoogle Scholar
  154. 154.
    V. A. Kondratiev, “On solutions of nonlinear elliptic equations in cylindrical domains,” Fundam. Prikl. Mat., 2, No. 3, 863–874 (1996).MathSciNetGoogle Scholar
  155. 155.
    V. A. Kondratiev, “On nonlinear boundary-value problems in cylindrical domains,” Tr. Sem. Petrovsk., No. 19, 235–261 (1996).Google Scholar
  156. 156.
    V. A. Kondratiev and F. Nicolosi, “On some properties of the solutions of quasilinear degenerate elliptic equations,” Math. Nachr., 182, 243–260 (1996).zbMATHMathSciNetCrossRefGoogle Scholar
  157. 157.
    V. A. Kondratiev, “On asymptotic behavior of solutions of some parabolic equations in cylindrical domains,” in: 4th Symposium on Mathematical Analysis and Its Applications, Arandelovac, 1997, pp. 3–4.Google Scholar
  158. 158.
    V. A. Kondratiev, “The asymptotic behavior to nonlinear parabolic problems,” in: Abstracts of the Eighth Int. Colloquium on Differential Equations, Plovdiv (1997), p. 124.Google Scholar
  159. 159.
    V. A. Kondratiev, “On the estimates of the eigenvalues of some multipoints problems,” Abstracts of Mark Krein Int. Conf. “Operator Theory and Applications,” Odessa, 1997, pp. 53.Google Scholar
  160. 160.
    Yu. V. Egorov and V. A. Kondratiev, “On blow-up solutions for parabolic equations of second order,” in: Differential Equations, Asymptotic Analysis, and Mathematical Physics, Math. Research, Vol. 100, Akademie, Berlin (1997), pp. 77–84.Google Scholar
  161. 161.
    Yu. V. Egorov and V. A. Kondratiev, “On blow-up solutions for parabolic equation,” in: Abstracts, Differential Equations and Mathematical Physics, Mezniereba, Tbilisi (1997), p. 64.Google Scholar
  162. 162.
    M. V. Borsuk and V. A. Kondratiev, “On the behaviour of solutions of the Dirichlet problem for semilinear second-order elliptic equations in a neighbourhood of a conical boundary point,” Nonlinear Boundary-Value Problems, No. 7, 47–56 (1997).Google Scholar
  163. 163.
    V. A. Kondratiev and L. Veron, “Asymptotic behavior of solutions of some nonlinear parabolic or elliptic equations,” Asymptotic Anal., No. 14, 117–156 (1997).Google Scholar
  164. 164.
    A. P. Buslaev, V. A. Kondratiev, and A. I. Nazarov, “On periodic solutions of a nonlinear equation,” Differ. Uravn., 33, No. 11, 1569 (1997).Google Scholar
  165. 165.
    Yu. V. Egorov and V. A. Kondratiev, “On a problem of O. A. Oleinik,” Usp. Mat. Nauk, 52, No. 6, 159–160 (1997).Google Scholar
  166. 166.
    V. A. Kondratiev, “On asymptotic properties of a nonlinear heat equation,” Differ. Uravn., 34, No. 2, 246–256 (1998).MathSciNetGoogle Scholar
  167. 167.
    A. P. Buslaev, V. A. Kondratiev, and A. I. Zazarov, “A family of extremal problems and related properties of an integral,” Mat. Zametki, 64, No. 6, 830–838 (1998).Google Scholar
  168. 168.
    Yu. V. Egorov, V. A. Kondratiev, and O. A. Oleinik, “Asymptotic behavior of solutions of nonlinear elliptic and parabolic systems in cylindrical domains,” Mat. Sb., 189, No. 3, 45–68 (1998).MathSciNetGoogle Scholar
  169. 169.
    Yu. V. Egorov and V. A. Kondratiev, “On eigenvalues of the Dirichlet problem,” Dokl. Ross. Akad. Nauk, 360, No. 3, 451–453 (1998).zbMATHGoogle Scholar
  170. 170.
    Yu. V. Egorov and V. A. Kondratiev, “On blow-up solutions for parabolic equations of second order,” Nonlinear Boundary-Value Problems, 8, 89–94 (1998).Google Scholar
  171. 171.
    Yu. V. Egorov and V. A. Kondratiev, “On estimates of the first eigenvalue in some elliptic problems,” Operator Theory: Advances and Applications, 102, 73–84 (1998).MathSciNetGoogle Scholar
  172. 172.
    Yu. V. Egorov and V. A. Kondratiev, “Two theorems on blow-up solutions for parabolic equations,” Nonlinear Boundary-Value Problems, 8, 159–163 (1998).Google Scholar
  173. 173.
    Yu. V. Egorov and V. A. Kondratiev, “Two theorems on blow-up solutions for semilinear parabolic equations of second order,” C. R. Acad. Sci. Paris. Sér. 1, 326, 903–908 (1998).Google Scholar
  174. 174.
    L. A. Bagirov and V. A. Kondratiev, On Asymptotic Properties of Solutions of the Diffusion Equations. I. An Equation with Operator Coefficient, Preprint No. 605, Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow (1998).Google Scholar
  175. 175.
    L. A. Bagirov and V. A. Kondratiev, On Asymptotic Properties of Solutions of the Diffusion Equations. II. Construction and Justification of an Asymptotic Expansion, Preprint No. 618, Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow (1998).Google Scholar
  176. 176.
    L. A. Bagirov and V. A. Kondratiev, “Asymptotics of solutions of semilinear boundary-value problems,” Usp. Mat. Nauk, 53, No. 4, 184–185 (1998).Google Scholar
  177. 177.
    V. A. Kondratiev, “Completeness of root functions of elliptical operators in Banach spaces,” Russ. J. Math. Phys., 6, No. 2, 194–201 (1999).MathSciNetGoogle Scholar
  178. 178.
    Yu. V. Egorov and V. A. Kondratiev, “On blow-up solutions of second-order parabolic equations,” Dokl. Ross. Akad. Nauk, 364, No. 5, 590–592 (1999).zbMATHGoogle Scholar
  179. 179.
    V. A. Kondratiev, “On properties of solutions to nonlinear parabolic equations of the second order,” J. Dynam. Control Systems, 5, 523–546 (1999).MathSciNetCrossRefGoogle Scholar
  180. 180.
    Yu. V. Egorov and V. A. Kondratiev, “On asymptotic behavior in an infinite cylinder of solutions to an elliptic equation of second order,” Applicable Anal., 71, No. 1–4, 25–39 (1999).zbMATHMathSciNetGoogle Scholar
  181. 181.
    Yu. V. Egorov and V. A. Kondratiev, “On some global existence theorem for a semilinear parabolic problem,” Applied Nonlinear Analysis, 67–78 (1999).Google Scholar
  182. 182.
    V. A. Kondratiev and M. A. Shubin, “Discreteness of the spectrum for Schrödinger operators on manifolds of bounded geometry,” Operator Theory: Advances and Applications, 110, 185–226 (1999).Google Scholar
  183. 183.
    V. A. Kondratiev and M. A. Shubin, “Conditions of discreteness of the spectrum for the Schrödinger operator on a manifold,” Funkts. Anal. Prilozhen., 33, No. 3, 85–87 (1999).Google Scholar
  184. 184.
    V. A. Galaktionov, Yu. V. Egorov, V. A. Kondratiev, and S. I. Pokhozhaev, “On the conditions of the existence of solutions of a quasilinear inequality in a half-space,” Mat. Zametki, 67, 150–153 (2000).Google Scholar
  185. 185.
    Y. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, “On the necessary conditions of global existence of solutions to a quasilinear inequality in the half-space,” C. R. Acad. Sci. Paris. Sér. 1, 93–98 (2000).Google Scholar
  186. 186.
    Yu. V. Egorov and V. A. Kondratiev, “On the asymptotic behavior of solutions to a semilinear elliptic boundary problem in an unbounded domain,” C. R. Acad. Sci. Paris. Sér. 1, 785–790 (2000).Google Scholar
  187. 187.
    V. A. Kondratiev, “Asymptotic properties of solutions of nonlinear parabolic equations,” in: Proc. of the Voronezh Spring School on Mathematics “Pontryagin Workshop-XI,” Pt. 1, Izd. Voronezh Univ., Voronesh (2000), 95–108.Google Scholar
  188. 188.
    S. D. Eidelman and V. A. Kondratiev, “On the summability in L p of positive solutions of elliptic equations,” Russ. J. Math. Phys., 7, No. 2, 206–215 (2000).MathSciNetGoogle Scholar
  189. 189.
    Y. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, “On the necessary conditions of global existence to a quasilinear inequality in the half-space,” C. R. Acad. Sci. Paris. Sér. 1, 93–98 (2000).Google Scholar
  190. 190.
    V. A. Galaktionov, Yu. V. Egorov, V. A. Kondratiev, and S. I. Pokhozhaev, “On the conditions of the existence of solutions of a quasilinear inequality in half-space,” Mat. Zametki, 67, 150–153 (2000).Google Scholar
  191. 191.
    Yu. V. Egorov and V. A. Kondratiev, “On the asymptotic behavior of solutions to a semilinear elliptic boundary problem in an unbounded domain,” C. R. Acad. Sci. Paris. Sér. 1, 785–790 (2000).Google Scholar
  192. 192.
    Yu. V. Egorov and V. A. Kondratiev, “On global solutions to a semilinear elliptic boundary problem in an unbounded domain,” Rend. Inst. Mat. Univ. Trieste, 31, Suppl. 2, 87–102 (2000).zbMATHMathSciNetGoogle Scholar
  193. 193.
    V. A. Kondratiev, “On asymptotic properties of solutions of nonlinear parabolic equations,” in: Modern Methods in the Theory of Boundary-Value Problems. Proc. of the Voronezh Mathematical School “Pontryagin Workshop-XI,” Voronezh (2000), pp. 95–108.Google Scholar
  194. 194.
    Yu. V. Egorov, V. A. Kondratiev, and B.-W. Schulze, “On completeness of root functions of an elliptic operator on a manifold with conical points,” C. R. Acad. Sci. Paris. Sér. 1, 333, 551–556 (2001).zbMATHMathSciNetGoogle Scholar
  195. 195.
    Yu. V. Egorov and V. A. Kondratiev, “On the asymptotic behavior of solutions of a semilinear elliptic boundary problem in unbounded cone,” C. R. Acad. Sci. Paris. Sér. 1, 332, 705–710 (2001).zbMATHMathSciNetGoogle Scholar
  196. 196.
    Yu. V. Egorov and V. A. Kondratiev, “On the behavior of solutions of a nonlinear boundary-value problem for a second-order elliptic equation in an unbounded domain,” Tr. Mosk. Mat. Obshch., 62, 131–161 (2001).Google Scholar
  197. 197.
    Yu. V. Egorov and V. A. Kondratiev, “The behavior of the solutions of a nonlinear boundary-value problem for a second-order elliptic equation in an unbounded domain,” Trans. Moscow Math. Soc., 62, 125–147 (2001).Google Scholar
  198. 198.
    Yu. V. Egorov and V. A. Kondratiev, “On the asymptotic behavior of solutions to a semilinear elliptic boundary problem,” Funct. Differ. Equ., 8, No. 1–2, 163–181 (2001).zbMATHMathSciNetGoogle Scholar
  199. 199.
    Yu. V. Egorov, V. A. Kondratiev, and B.-W. Schulze, “On completeness of root functions of elliptic boundary problems in a domain with conical points on the boundary,” C. R. Acad. Sci. Paris. Sér. 1, 334, 649–654 (2002).zbMATHMathSciNetGoogle Scholar
  200. 200.
    V. A. Kondratiev and M. A. Shubin, “Discreteness of the spectrum for the magnetic Schrödinger operators,” Comm. Partial Differential Equations, 27, No. 3–4, 477–525 (2002).zbMATHMathSciNetGoogle Scholar
  201. 201.
    V. A. Kondratiev and V. A. Nikishkin, “On the behavior of solutions of elliptic equations in a neighborhood of a crack with nonsmooth front,” Russ. J. Math. Phys., 9, No. 1, 106–111 (2002).MathSciNetGoogle Scholar
  202. 202.
    Yu. V. Egorov and V. A. Kondratiev, “On the asymptotic behavior of solutions of a semilinear elliptic boundary problem in unbounded domains,” in: Proc. of the Steklov Institute of Mathematics, 236, 434–448 (2002).MathSciNetGoogle Scholar
  203. 203.
    L. A. Bagirov and V. A. Kondratiev, “On asymptotic properties of solutions of the diffusion equations,” Tr. Sem. Petrovsk., No. 22, 37–70 (2002).Google Scholar
  204. 204.
    V. A. Kondratiev, “Discreteness of the spectrum for magnetic Schrödinger operators,” in: Abstracts, Int. Conf. on Differential and Functional Differential Equations, Moscow, Russia, August 11–17, 2002.Google Scholar
  205. 205.
    V. A. Kondratiev and G. A. Chechkin, “Homogenization of the Lavrentiev-Bitsadze equation in a semi-perforated domain,” Differ. Uravn., 38, No. 10, 1390–1396 (2002).MathSciNetGoogle Scholar
  206. 206.
    Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S.I. Pohozaev, “On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range,” C. R. Acad. Sci. Paris. Sér. 1, 335, 805–810 (2002).zbMATHMathSciNetGoogle Scholar
  207. 207.
    G. A. Chechkin and V. A. Kondratiev, “Homogenization of the Lavrent’ev-Bitsadze equation in a partially perforated domain,” Differ. Equations, 38, No. 10, 1481–1487 (2002).zbMATHCrossRefGoogle Scholar
  208. 208.
    V. A. Kondratiev, V. Liskevich, and Z. Sobol, “Second-order semilinear elliptic inequalities in exterior domains,” J. Differential Equations, 187, 429–455 (2002).MathSciNetCrossRefGoogle Scholar
  209. 209.
    V. A. Kondrat’ev, “On the existence of positive solutions of second-order semilinear elliptic equations in cylindrical domains,” Russ. J. Math. Phys., 10, No. 1, 11–20 (2003).Google Scholar
  210. 210.
    V. A. Kondratiev, “On the existence of positive solutions of second-order semilinear elliptic equations in unbounded domains,” Funct. Differ. Equ., 10, No. 1–2, 283–290 (2003).zbMATHMathSciNetGoogle Scholar
  211. 211.
    V. A. Kondratiev and G. A. Chechkin, “Asymptotics of solutions of the Lavrentiev-Bitsadze equations in a semi-perforated domain,” Differ. Uravn., 39, No. 5, 645–655 (2003).MathSciNetGoogle Scholar
  212. 212.
    V. A. Kondratiev and V. A. Nikishkin, “On the asimptotics of solutions of elliptic equations in a neighborhood of a crack with nonsmooth front,” Georgian Math. J., 10, No. 3, 543–548 (2003).MathSciNetGoogle Scholar
  213. 213.
    I. V. Astashova, A. V. Filinovskii, V. A. Kondratiev, and L. A. Muravey, “Some problems in the qualitative theory of differential equations,” J. Natur. Geom., 23, 1–126 (2003).Google Scholar
  214. 214.
    V. Liskevich, V. A. Kondratiev, Z. Sobol, and O. Us, “Estimates of heat kernels for a class of second-order elliptic operators with applications to semi-linear inequalities in exterior domains,” J. London Math. Soc., 69, 107–127 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  215. 215.
    Yu. V. Egorov and V. A. Kondratiev, “Asymptotic behavior of solutions of a nonlinear parabolic boundary-value problem,” Dokl. Ross. Akad. Mauk, 397, No. 5, 590–592 (2004).Google Scholar
  216. 216.
    Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, “Global solutions of higher-order parabolic semilinear equations,” Adv. Differential Equations, 9, No. 9–10, 1009–1038 (2004).zbMATHMathSciNetGoogle Scholar
  217. 217.
    V. A. Kondratiev, V. G. Mazya, and M. A. Shubin, “Discreteness and strict positivity criteria for magnetic Schrödinger operators,” Comm. Partial Differential Equations, 29, No. 3–4, 39–52 (2004).MathSciNetGoogle Scholar
  218. 218.
    V. A. Kondratiev, V. Liskevich, and V. Moroz, “Positive solutions to superlinear second-order divergence-type elliptic equations in cone-like domains,” Ann. Inst. H. Poincaré, 22, 25–43 (2005).zbMATHMathSciNetCrossRefGoogle Scholar
  219. 219.
    V. A. Kondratiev, “On positive solutions of weakly nonlinear second-order elliptic equations in cylindrical domains,” Tr. Mat. Inst. Steklova, 250, 183–191 (2005).Google Scholar
  220. 220.
    V. A. Kondratiev, “Positive solutions to weakly nonlinear elliptic equations of second order on cylindrical domains,” in: Proc. of the Steklov Institute of Mathematics, 250, 1–9 (2005).Google Scholar
  221. 221.
    V. A. Kondratiev, V. Liskevich, V. Moroz, and Z. Sobol, “A critical phenomenon for sublinear elliptic equations in cone-like domains,” Bull. London Math. Soc., 37, 585–591 (2005).zbMATHMathSciNetCrossRefGoogle Scholar
  222. 222.
    M. V. Borsuk and V. A. Kondratiev, Elliptic Boundary-Value Problems of Second Order in Piecewise Smooth Domains, North-Holland Mathematical Library, Vol. 69, North-Holland (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Personalised recommendations