# Vladimir Alexandrovich Kondratiev on the 70th anniversary of his birth

Article

## Keywords

Elliptic Equation Parabolic Equation Dirichlet Problem Elliptic Operator Unbounded Domain
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## List Of Publications Of V. A. Kondratiev

- 1.V. A. Kondratiev, “Elementary derivation of a necessary and sufficient condition of nonoscillation for solutions of a second-order linear differential equation,”
*Usp. Mat. Nauk*,**12**, No. 3, 159–160 (1957).Google Scholar - 2.V. A. Kondratiev, “Sufficient conditions of oscillation and nonoscillation for solutions of the equation
*y*″ +*p*(*x*)*y*= 0,”*Dokl. Akad. Nauk SSSR*,**113**, No. 4, 742–745 (1957).zbMATHMathSciNetGoogle Scholar - 3.V. A. Kondratiev, “On nonoscillation of solutions of linear differential equations of the third and fourth order,”
*Dokl. Akad. Nauk SSSR*,**118**, No. 1, 22–24 (1958).zbMATHMathSciNetGoogle Scholar - 4.V. A. Kondratiev, “On zeroes of solutions of the equation
*y*″ +*p*(*x*)*y*= 0,”*Dokl. Akad. Nauk SSSR*,**120**, No. 6, 1180–1182 (1958).zbMATHMathSciNetGoogle Scholar - 5.V. A. Kondratiev, “On oscillation of solutions of linear equations of the third and fourth order,”
*Tr. Mosk. Mat. Obshch.*,**8**, 259–281 (1959).Google Scholar - 6.V. A. Kondratiev, “Extension of linear differential operators,”
*Dokl. Akad. Nauk SSSR*,**125**, No. 3, 479–481 (1959).MathSciNetGoogle Scholar - 7.V. A. Kondratiev, “On oscillation of solutions of the equation
*y*″ +*p*(*x*)*y*= 0,”*Tr. Mosk. Mat. Obshch.*,**10**, 419–436 (1961).Google Scholar - 8.V. A. Kondratiev, “On solvability of the first boundary-value problem for elliptic equations,”
*Dokl. Akad. Nauk SSSR*,**136**, No. 4, 771–774 (1961).Google Scholar - 9.V. A. Kondratiev, “Estimates near the boundary for derivatives of solutions of elliptic equations,”
*Dokl. Akad. Nauk SSSR*,**146**, No. 1, 22–25 (1962).MathSciNetGoogle Scholar - 10.V. A. Kondratiev, “Boundary-value problems for elliptic equations in conical domains,”
*Dokl. Akad. Nauk SSSR*,**153**, No. 1, 27–29 (1963).MathSciNetGoogle Scholar - 11.V. A. Kondratiev, “General boundary-value problems for parabolic equations in a closed domain,”
*Dokl. Akad. Nauk SSSR*,**163**, No. 2, 285–288 (1965).MathSciNetGoogle Scholar - 12.V. A. Kondratiev, “Boundary-value problems for parabolic equations in closed domains,”
*Tr. Mosk. Mat. Obshch.*,**15**, 400–451 (1966).Google Scholar - 13.V. A. Kondratiev and Yu. V. Egorov, “On a problem with oblique derivative,”
*Dokl. Akad. Nauk SSSR*,**170**, No. 4, 770–772 (1966).MathSciNetGoogle Scholar - 14.V. A. Kondratiev, “Asymptotic behavior of the solution of the Navier-Stokes equation near an angular point on the boundary,”
*Prikl. Mat. Mekh.*,**31**, No. 1, 119–123 (1967).Google Scholar - 15.V. A. Kondratiev, “On the solvability of the first boundary-value problem for strongly elliptic equations,”
*Tr. Mosk. Mat. Obshch.*,**16**, 293–318 (1967).Google Scholar - 16.V. A. Kondratiev, “Boundary-value problems for elliptic equations in domains with conical or angular points,”
*Tr. Mosk. Mat. Obshch.*,**16**, 209–292 (1967).Google Scholar - 17.V. A. Kondratiev and S. D. Eidelman, “On the character of solutions of linear evolutionary systems with elliptic spatial part,”
*Dokl. Akad. Nauk SSSR*,**189**, No. 3, 468–471 (1969).MathSciNetGoogle Scholar - 18.V. A. Kondratiev and Yu. V. Egorov, “On a problem with oblique derivative,”
*Mat. Sb.*,**78**, 148–176 (1969).MathSciNetGoogle Scholar - 19.V. A. Kondratiev and S. D. Eidelman, “On properties of positive solutions of evolutionary hypoelliptic equations,”
*Dokl. Akad. Nauk SSSR*,**184**, No. 5, 1027–1030 (1969).MathSciNetGoogle Scholar - 20.V. A. Kondratiev, “Singularities of a solution of Dirichlet’s problem for a second-order elliptic equation in a neighborhood of an edge,”
*Differ. Uravn.*, No. 13, 1411–1415 (1970).Google Scholar - 21.V. A. Kondratiev, “On the smoothness of solutions of the Dirichlet problem for second-order elliptic equations in piecewise-smooth domains,”
*Differ. Uravn.*,**6**, No. 10, 1831–1843 (1970).Google Scholar - 22.V. A. Kondratiev and S. D. Eidelman, “On the uniqueness of a solution of the Cauchy problem for linear evolutionary systems with constant coefficients,”
*Dokl. Akad. Nauk SSSR*,**190**, No. 5, 1026–1029 (1970).MathSciNetGoogle Scholar - 23.V. A. Kondratiev and S. D. Eidelman, “On properties of solutions of linear evolutionary equations with elliptic spatial part,”
*Mat. Sb.*,**81**, No. 3, 398–429 (1970).MathSciNetGoogle Scholar - 24.V. A. Kondratiev and S. D. Eidelman, “On the region of positivity of solutions of elliptic equations,”
*Mat. Zametki*,**9**, No. 1, 83–87 (1971).MathSciNetGoogle Scholar - 25.V. A. Kondratiev, T. G. Pletneva, and S. D. Eidelman, “On positive solutions of elliptic equations,”
*Mat. Sb.*,**85**, No. 4, 586–609 (1971).MathSciNetGoogle Scholar - 26.V. A. Kondratiev, T. G. Pletneva, and S. D. Eidelman, “On positive solutions of partial differential equations in a neighborhood of a smooth noncharacteristic hypersurface,”
*Dokl. Akad. Nauk SSSR*,**204**, No. 2, 279–282 (1972).MathSciNetGoogle Scholar - 27.V. A. Kondratiev, T. G. Pletneva, and S. D. Eidelman, “Positive solutions of linear evolutionary quasi-elliptic equations,”
*Mat. Sb.*,**89**, No. 1, 16–45 (1972).MathSciNetGoogle Scholar - 28.V. A. Kondratiev and V. S. Samovol, “On linearization of an autonomous system in a neighborhood of a nodal singular point,”
*Mat. Zametki*,**14**, No. 6, 833–842 (1973).MathSciNetGoogle Scholar - 29.V. A. Kondratiev, “Cauchy’s problem with characteristic points on the initial surface,”
*Vestn. Mosk. Univ. Ser. 1 Mat. Mekh.*, No. 1, 84–92 (1974).Google Scholar - 30.V. A. Kondratiev and S. D. Eidelman, “On biharmonic functions which are positive in a semi-strip,”
*Mat. Zametki*,**15**, No. 1, 121–128 (1974).MathSciNetGoogle Scholar - 31.V. A. Kondratiev and S. D. Eidelman, “Positive solutions of linear partial differential equations,”
*Tr. Mosk. Mat. Obshch.*,**31**, 85–106 (1974).Google Scholar - 32.V. A. Kondratiev and L. A. Bagirov, On elliptic equations in
*R*^{n},”*Differ. Uravn.*,**11**, No. 3, 498–504 (1975).Google Scholar - 33.V. A. Kondratiev and T. M. Kerimov, On the spectrum of a second-order elliptic operator,”
*Mat. Zametki*,**20**, No. 3, 351–358 (1976).MathSciNetGoogle Scholar - 34.V. A. Kondratiev, “On summability of positive solutions of differential equations of arbitrary order in a neighborhood of the characteristic manifold,”
*Mat. Sb.*,**99**, No. 4, 582–593 (1976).MathSciNetGoogle Scholar - 35.V. A. Kondratiev, “Singularities of the solution of the Dirichlet problem for a second-order elliptic equation in a neighborhood of an edge,”
*Differ. Uravn.*,**13**, No. 11, 2026–2032 (1977).Google Scholar - 36.V. A. Kondratiev and S. D. Eidelman, “Positive solutions of linear systems of partial differential equations,”
*Tr. Sem. S. L. Soboleva*, No. 2, 172–173 (1977).Google Scholar - 37.V. A. Kondratiev and S. D. Eidelman, “On nonnegative solutions of overdetermined systems of partial differential equations,”
*Dokl. Akad. Nauk SSSR*,**237**, No. 3, 513–516 (1977).MathSciNetGoogle Scholar - 38.V. A. Kondratiev and S. D. Eidelman, “On the inclusion of solutions of quasielliptic equations in
*L*_{p},”*Mat. Zametki*,**21**, No. 4, 519–524 (1977).MathSciNetGoogle Scholar - 39.V. A. Kondratiev and L. A. Bagirov, “A class of elliptic equations in
*R*^{n},”*Tr. Sem. S. L. Soboleva*, No. 2, 5–16 (1978).Google Scholar - 40.V. A. Kondratiev and S. D. Eidelman, “Properties of positive solutions of a system of partial differential equations,” in:
*Proc. of the All-Union Conf. on Partial Differential Equations*[in Russian], Izd. Mosk. Univ. (1978), pp. 131–134.Google Scholar - 41.V. A. Kondratiev, “On elliptic boundary-value problems,” in:
*Theory of Operators in Functional Spaces*[in Russian], Izd. Inst. Mat. Bel. SSR, Minsk (1978), p. 164.Google Scholar - 42.V. R. Vainberg, Yu. V. Egorov, and V. A. Kondratiev, “A computational method for charged particle flux in magnetic protection systems,”
*Dosimetry Problems*, Atomizdat, Moscow, No. 17, 149–154 (1978).Google Scholar - 43.V. A. Kondratiev and S. D. Eidelman, “Conditions on the boundary surface in the theory of elliptic boundary-value problems,”
*Dokl. Akad. Nauk SSSR*,**246**, No. 4, 812–815 (1979).MathSciNetGoogle Scholar - 44.V. A. Kondratiev, “On solutions of the hyperbolic Cauchy problem with characteristic points on the initial surface,”
*Tr. Sem. Petrovsk.*, No. 5, 97–104 (1979).Google Scholar - 45.V. A. Kondratiev and V. A. Nikishkin, “On positive solutions of the equations
*y*″ =*p*(*x*)*y*^{k},” in:*Some Problems in the Qualitative Theory of Differential Equations and Motion Control*[in Russian], Izd. Mordovsk. Gos. Univ., Saransk (1980), pp. 134–141.Google Scholar - 46.V. A. Kondratiev, O. A. Oleinik, and I. Kopaček, “Asymptotic properties of solutions of the biharmonic equation,”
*Differ. Uravn.*,**17**, No. 10, 1886–1899 (1981).Google Scholar - 47.V. A. Kondratiev, O. A. Oleinik, and I. Kopaček, “Estimates for solutions of second-order elliptic equations and the system of elasticity in a neighborhood of a boundary point,”
*Usp. Mat. Nauk*,**36**, No. 1, 211–212 (1981).Google Scholar - 48.V. A. Kondratiev and V. S. Samovol, “Some asymptotic properties of solutions of equations of Emden-Fowler type,”
*Differ. Uravn.*,**17**, No. 4, 749–750 (1981).Google Scholar - 49.V. A. Kondratiev, O. A. Oleinik, and I. Kopaček, “On the behavior of weak solutions of second-order elliptic equations and the system of elasticity in a neighborhood of a boundary point,”
*Tr. Sem. Petrovsk.*, No. 2, 135–152 (1982).Google Scholar - 50.V. A. Kondratiev and O. A. Oleinik, “Estimates for solutions of the Dirichlet problem in a neighbourhood of an irregular boundary point and in a neighbourhood of infinity. Saint-Venant’s principle,”
*Proc. Roy. Soc. Edinburgh Sect. A.*,**93**, No. 3–4, 327–343 (1982).MathSciNetGoogle Scholar - 51.Yu. V. Egorov and V. A. Kondratiev, “An estimate for the first eigenvalue of a self-adjoint elliptic operator,”
*Vestn. Mosk. Univ. Ser. 1 Mat. Mekh.*, No. 3, 46–52 (1983).Google Scholar - 52.V. A. Kondratief, Yu. V. Egorov, and O. A. Oleinik, “Precise Hölder estimates for weak solutions of the biharmonic equation, the Navier-Stokes system, and the von Karman system in nonsmooth two-dimensional domains,”
*Vestn. Mosk. Univ. Ser. 1 Mat. Mekh.*, No. 6, 22–39 (1983).Google Scholar - 53.V. A. Kondratiev and O. A. Oleinik, “Boundary-value problems for partial differential equations in nonsmooth domains,”
*Usp. Mat. Nauk*,**38**, No. 2, 3–76 (1983).Google Scholar - 54.V. A. Kondratiev and O. A. Oleinik, “Uniqueness theorems for solutions of exterior boundary-value problems and an analogue of the Saint-Venant principle,”
*Usp. Mat. Nauk*,**39**, No. 4, 165–166 (1984).Google Scholar - 55.Yu. V. Egorov and V. A. Kondratiev, “An estimate for the smallest eigenvalue of an elliptic operator,”
*Differ. Uravn.*,**20**, No. 8, 1397–1403 (1984).Google Scholar - 56.Yu. V. Egorov and V. A. Kondratiev, “Estimates for the first eigenvalue of the Sturm-Liouville problem,”
*Usp. Mat. Nauk*,**39**, No. 2, 151–152 (1984).zbMATHGoogle Scholar - 57.V. A. Kondratiev, O. A. Oleinik, and I. Kopaček, “Best possible Hölder estimates and the precise Saint-Venant’s principle for solutions of the biharmonic equation,”
*Tr. Mat. Inst. AN Ukr. SSR*,**160**, 91–106 (1984).Google Scholar - 58.V. A. Kondratiev and O. A. Oleinik, “On a problem of Sanchez-Palencia,”
*Usp. Mat. Nauk*,**39**, No. 5, 257 (1984).Google Scholar - 59.V. A. Kondratiev and Yu. V. Egorov, “Some estimates for eigenfunctions of an elliptic operator,”
*Vestn. Mosk. Univ. Ser. 1 Mat. Mekh.*, No. 4, 32–34 (1985).Google Scholar - 60.V. A. Kondratiev and O. A. Oleinik, “Time-periodic solutions of a second-order parabolic equation in exterior domains,”
*Vestn. Mosk. Univ. Ser. 1 Mat. Mekh.*, No. 4, 38–47 (1985).Google Scholar - 61.V. A. Kondratiev and V. M. Uroev, “Smoothness of solutions of a boundary-value problem for elliptic equations with parameters,”
*Differ. Uravn.*,**21**, No. 80, 1407–1412 (1985).Google Scholar - 62.V. A. Kondratiev and O. A. Oleinik, “Precise Hölder exponents for weak solutions of the Dirichlet problem for the biharmonic equation and their dependence on the geometry of the domain,”
*Usp. Mat. Nauk*,**40**, No. 4, 173–174 (1985).Google Scholar - 63.V. A. Kondratiev and O. A. Oleinik, “On the asymptotic behavior of solutions of partial differential systems,”
*Usp. Mat. Nauk*,**40**, No. 5, 306 (1985).Google Scholar - 64.V. A. Kondratiev, I. Kopaček, and O. A. Oleinik, “Best Hölder exponents for weak solutions of the Dirichlet problem for a second-order elliptic equation,”
*Mat. Sb.*,**131**, No. 1, 113–125 (1986).Google Scholar - 65.V. A. Kondratiev and E. M. Landis, “Semilinear second-order equations with nonnegative characteristic form,”
*Mat. Zametki*,**44**, No. 4, 457–468 (1986).Google Scholar - 66.V. A. Kondratiev and O. A. Oleinik, “Estimates near the boundary for second-order derivatives of solutions of the Dirichlet problem for the biharmonic equation,”
*Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8)*.,**80**, No. 7, 525–529 (1986).zbMATHMathSciNetGoogle Scholar - 67.V. A. Kondratiev, “On nonnegative solutions of second-order elliptic equations with divergent principal part,”
*Usp. Mat. Nauk*,**41**, No. 5, 209 (1986).Google Scholar - 68.V. A. Kondratiev and O. A. Oleinik, “Asymptotic properties of solutions of the elasticity system,” in:
*Application of Multiple Scaling in Mechanics*, Masson, Paris (1987), pp. 188–205.Google Scholar - 69.V. A. Kondratiev and O. A. Oleinik, “Asymptotics at infinity of solutions of second-order elliptic equations with a finite Dirichlet integral,”
*Tr. Sem. Petrovsk.*, No. 12, 149–163 (1987).Google Scholar - 70.V. A. Kondratiev and O. A. Oleinik, “Estimates for the second derivatives of the solution of the Dirichlet problem for the biharmonic equation in a neighborhood of angular points on the boundary,”
*Usp. Mat. Nauk*,**42**, No. 2, 231–232 (1987).Google Scholar - 71.V. A. Kondratiev and Yu. V. Egorov, “Estimates for eigenfunctions of elliptic operators with constant coefficients,”
*Tr. Sem. Petrovsk.*, No. 12, 229–237 (1987).Google Scholar - 72.V. A. Kondratiev and Yu. V. Egorov, “Estimates for the number of points of the negative spectrum of the Schrödinger operator,”
*Mat. Sb.*,**134**, No. 4, 556–570 (1987).Google Scholar - 73.V. A. Kondratiev and O. A. Oleinik, “On the uniqueness of solutions of boundary-value problems in unbounded domains and isolated singularities of solutions of the system of elasticity and second-order elliptic equations,”
*Usp. Mat. Nauk*,**42**, No. 4, 189–190 (1987).Google Scholar - 74.V. A. Kondratiev and O. A. Oleinik, “Current problems of mathematical physics,” in:
*Proc. All-Union Sympos.*, Vol. 1, Mezniereba, Tbilisi (1987), pp. 35–63.Google Scholar - 75.V. A. Kondratiev and O. A. Oleinik, “On the behaviour at infinity of solutions of elliptic systems with finite energy integral,”
*Arch. Rational Mech. Anal.*,**99**, No. 1, 75–89 (1987).zbMATHMathSciNetCrossRefGoogle Scholar - 76.V. A. Kondratiev and E. M. Landis, “Qualitative theory of linear second-order partial differential equations,” in:
*Advances in Science and Technology. Modern Problems in Mathematics. Fundamental Trends*[in Russian], Vol. 32, VINITI, Moscow (1988), pp. 99–215.Google Scholar - 77.Yu. V. Egorov and V. A. Kondratiev, “Some estimates for eigenfunctions of an elliptic operator,”
*Vestn. Mosk. Univ. Ser. 1 Mat. Mekh.*, No. 4, 32–34 (1988).Google Scholar - 78.V. A. Kondratiev and O. A. Oleinik, “Boundary-value problems for the system of elasticity in unbounded domains. Korn’s inequalities,”
*Usp. Mat. Nauk*,**43**, No. 5, 55–98 (1988).Google Scholar - 79.V. A. Kondratiev and E. M. Landis, “On qualitative characteristics of solutions of a second-order nonlinear equation,”
*Mat. Sb.*,**135**, No. 3, 346–359 (1988).Google Scholar - 80.U. V. Egorov and V. A. Kondratiev, “On the negative spectrum of an elliptic operator,” in: Symp. “Partial Differential Equations,” Teubner-Texte zur Mathematik, Holzhau (1988), pp. 63–72.Google Scholar
- 81.M. V. Borsuk and V. A. Kondratiev, “Behavior of the solution of the Dirichlet problem for a second-order quasilinear elliptic equation near an angular point,”
*Differ. Uravn.*,**24**, No. 10, 1778–1784 (1988).Google Scholar - 82.V. A. Kondratiev and E. M. Landis, “Semilinear second-order equations with nonnegative characteristic form,”
*Mat. Zametki*,**44**, No. 4, 457–468 (1988).Google Scholar - 83.L. A. Bagirov and V. A. Kondratiev, “On the regularity of solutions of higher-order elliptic equations with continuous coefficients,”
*Usp. Mat. Nauk*,**44**, No. 1, 185–186 (1989).Google Scholar - 84.V. A. Kondratiev and O. A. Oleinik, “Dependence of the constants in Korn’s inequality on the parameters characterizing the geometry of the domain,”
*Usp. Mat. Nauk*,**44**, No. 6, 157–158 (1989).Google Scholar - 85.V. A. Kondratiev and O. A. Oleinik, “On Korn’s inequalities,”
*C. R. Acad. Sci. Paris. Sér. 1*,**308**, 483–487 (1989).zbMATHMathSciNetGoogle Scholar - 86.V. A. Kondratiev and V. A. Nikishkin, “Boundary estimates for solutions of a singular problem for a semilinear elliptic equation,” in:
*Applications of New Methods in Analysis*[in Russian], Izd. Voronezh. Univ., Voronezh (1989), pp. 72–79.Google Scholar - 87.V. A. Kondratiev and V. A. Nikishin, “Uniqueness of solutions of a singular boundary-value problem for semilinear equations,”
*Dokl. Sem. I. N. Vekua*, Mezniereba, Tbilisi (1989),**4**, No. 1, 43–52.Google Scholar - 88.Yu. V. Egorov and V. A. Kondratiev, “A numerical differentiation problem,”
*Vestn. Mosk. Univ. Ser. 1 Mat. Mekh.*, No. 3, 80–81 (1989).Google Scholar - 89.V. A. Kondratiev, V. A. Kozlov, and V. G. Maz’ja, “On the alternating character and the absence of ’strong’ zeros of solutions of elliptic equations,”
*Izv. Akad. Nauk SSSR, Ser. Mat.*,**53**, No. 2, 328–344 (1989).Google Scholar - 90.M. I. Vishik, Yu. S. Il’yashenko, A. S. Kalashnikov, V. A. Kondratiev, S. N. Kruzhkov, E. M. Landis, V. M. Millionschikov, O. A. Oleinik, A. F. Filippov, and M. A. Shubin, “Some open problems in the theory of differential equations and mathematical physics,”
*Usp. Mat. Nauk*,**44**, No. 4, 191–202 (1989).Google Scholar - 91.V. A. Kondratiev and O. A. Oleinik, “Some generalizations of Korn’s inequalities and their applications,”
*Usp. Mat. Nauk*,**44**, No. 4, 205 (1989).Google Scholar - 92.V. A. Kondratiev and E. M. Landis, “The qualitative theory of second-order partial differential equations,” in:
*Encyclopedia of Mathematical Sciences*, Vol. 31, Springer, Berlin (1989), pp. 99–215.Google Scholar - 93.V. A. Kondratiev and O. A. Oleinik, “Hardy and Korn inequalities for a class of unbounded domains and their applications in elasticity,”
*Dokl. Akad. Nauk SSSR*,**312**, No. 6, 1299–1304 (1990).Google Scholar - 94.Yu. V. Egorov and V. A. Kondratiev, “On the negative spectrum of an elliptic operator,”
*Mat. Sb.*,**181**, No. 2, 147–166 (1990).Google Scholar - 95.V. A. Kondratiev and V. A. Nikishin, “On boundary asymptotics of the solution of a singular boundary-value problem for a semilinear elliptic equation,”
*Differ. Uravn.*,**26**, No. 3, 465–468 (1990).Google Scholar - 96.Yu. V. Egorov and V. A. Kondratiev, “On the negative spectrum of an elliptic operator,”
*Tr. Mat. Inst. Steklova*,**192**, 61–67 (1990).zbMATHGoogle Scholar - 97.V. A. Kondratiev and O. A. Oleinik, “Hardy’s and Korn’s type inequalities and their applications,”
*Rend. Mat. (7)*,**10**, Fasc. 3, 641–666 (1990).zbMATHMathSciNetGoogle Scholar - 98.V. A. Kondratiev, O. A. Oleinik, and I. Kopaček, “On the character of continuity on the boundary of a nonsmooth domain for weak solutions of the Dirichlet problem for the biharmonic equation,”
*Mat. Sb.*,**181**, No. 4, 564–575 (1990).Google Scholar - 99.Yu. V. Egorov and V. A. Kondratiev, “An estimate for the first eigenvalue of the Sturm-Liouville operator,”
*Vestn. Mosk. Univ. Ser. 1 Mat. Mekh.*, No. 6, 75–78 (1990).Google Scholar - 100.L. A. Bagirov and V. A. Kondratiev, “On the asymptotics of solutions of differential equations in Hilbert space,”
*Mat. Sb.*,**182**, No. 4, 508–525 (1991).zbMATHGoogle Scholar - 101.Yu. V. Egorov and V. A. Kondratiev, “An estimate for the first eigenvalue of the Sturm-Liouville operator,”
*Vestn. Mosk. Univ. Ser. 1 Mat. Mekh.*, No. 6, 5–11 (1991).Google Scholar - 102.V. A. Kondratiev and O. A. Oleinik, “Korn’s inequalities and their applications. Nonlinear boundary-value problems,”
*Sb. AN Ukr. SSR*,**3**, 35–42 (1991).Google Scholar - 103.V. A. Kondratiev, “Schauder-type estimates of solutions of second-order elliptic systems in divergence form in non-regular domains,”
*Comm. Partial Differential Equations*,**16**, No. 12, 1857–1878 (1991).MathSciNetGoogle Scholar - 104.V. A. Kondratiev, “On the solutions of semilinear equations in non-smooth domains,” in:
*Continuum Mechanics and Related Problems of Analysis*, Mezniereba, Tbilisi (1991), pp. 57–73.Google Scholar - 105.V. A. Kondratiev and O. A. Oleinik, “A new approach to the problems of Bussinesque and Ceruti for the system of elasticity,”
*Vestn. Mosk. Univ. Ser. 1 Mat. Mekh.*, No. 1, 12–23 (1991).Google Scholar - 106.Yu. V. Egorov and V. A. Kondratiev, “An estimate for the minimal eigenvalue of the Sturm-Liouville operator,”
*Proc. of the Sem. of the Vekua Institute of Applied Mathematics*, Mezniereba, Tbilisi,**5**, No. 3, 76–79 (1991).Google Scholar - 107.V. A. Kondratiev, “On qualitative characteristics of solutions of semilinear elliptic equations,”
*Tr. Sem. Petrovsk.*, No. 16, 186–190 (1992).Google Scholar - 108.Yu. V. Egorov and V. A. Kondratiev, “On the negative spectrum of an elliptic operator,”
*Vestn. Mosk. Univ. Ser. 1 Mat. Mekh.*, No. 2, 88–91 (1992).Google Scholar - 109.V. A. Kondratiev and O. A. Oleinik, “Some results for nonlinear elliptic equations in cylindrical domains,” in:
*Operator Calculus and Spectral Theory*, Birkhäuser, Basel (1992), pp. 185–195.Google Scholar - 110.V. A. Kondratiev and O. A. Oleinik, “On estimates for the eigenvalues in some elliptic problems,” in:
*Operator Calculus and Spectral Theory*, Birkhäuser, Basel (1992), pp. 51–60.Google Scholar - 111.V. A. Kondratiev and O. A. Oleinik, “On asymptotic behaviour of solutions of some nonlinear elliptic equations in unbounded domains,” in:
*Partial Differential Equations and Related Subjects*, Pitman Research Notes in Math. Ser., 1992, pp. 169–196.Google Scholar - 112.V. A. Kondratiev, “Asymptotics of solutions of the Navier-Stokes equation in a neighborhood of an angle,”
*Prikl. Mekh. Tekh. Fiz.*, No. 10, 38–40 (1992).Google Scholar - 113.Yu. V. Alkhutov and V. A. Kondratiev, “Solvability of the Dirichlet problem for second-order elliptic equations in convex domains,”
*Differ. Uravn.*,**28**, No. 5, 806–818 (1992).Google Scholar - 114.U. V. Egorov and V. A. Kondratiev, “On the negative spectrum of an elliptic operator,” in:
*Symp. “Analysis on Manifolds with Singularities,”*Teubner-Texte zur Mathematik, Bd. 131, Stuttgart (1992), pp. 51–56.Google Scholar - 115.Yu. V. Egorov and V. A. Kondratiev, “Estimates of the negative spectrum of an elliptic operator,”
*Amer. Math. Soc. Transl. (2)*,**150**, 111–140 (1992).Google Scholar - 116.V. A. Kondratiev and O. A. Oleinik, “Boundary-value problems for nonlinear elliptic equations in cylindrical domains,”
*J. Partial Differ. Eqs.*,**6**, No. 1, 10–16 (1993).zbMATHMathSciNetGoogle Scholar - 117.V. A. Kondratiev, “Invertibility of Schrödinger operators in weighted spaces,”
*Russ. J. Math. Phys.*,**1**, No. 4, 465–482 (1993).Google Scholar - 118.V. A. Kondratiev, “On solutions of weakly nonlinear elliptic equations near a conical point of the boundary,”
*Differ. Uravn.*,**29**, No. 2, 298–306 (1993).MathSciNetGoogle Scholar - 119.V. A. Kondratiev and S. D. Eidelman, “On positive solutions of some quasilinear equations,”
*Dokl. Akad. Nauk SSSR*,**331**, No. 3, 278–280 (1993).Google Scholar - 120.V. A. Kondratiev and S. D. Eidelman, “Qualitative characteristics of positive solutions of linear and quasilinear partial differential equations of an arbitrary order,” in:
*Proc. of the Fourth Crimean Autumn Mathematical School-Symposium CROMSh-3 “Spectral and Evolutionary Problems,”*No. 3, Simferopol (1993), pp. 110–119.Google Scholar - 121.V. N. Aref’ev and V. A. Kondratiev, “Asymptotic behavior of solutions of the second boundary-value problem for nonlinear parabolic equations,”
*Differ. Uravn.*,**29**, No. 12, 2104–2116 (1993).Google Scholar - 122.L. A. Bagirov and V. A. Kondratiev, “On the properties of generalized solutions of elliptic equations,”
*Russ. J. Math. Phys.*,**1**, No. 2, 139–164 (1993).zbMATHGoogle Scholar - 123.V. A. Kondratiev, “On asymptotics of solutions of nonlinear elliptic equations in a neighbourhood of a conic point of the boundary,” in:
*Partial Differential Equations*, Potsdam University (1993).Google Scholar - 124.U. V. Egorov and V. A. Kondratiev, “On a Lagrange problem and its generalizations,” in:
*Equations aux derivees partielles*, Epose XII Centre de Mathématiques École Polytechnique, Preprint (1993).Google Scholar - 125.V. A. Kondratiev, “Invertibility of Schrödinger operators in weighted spaces,”
*Russ. J. Math. Phys.*,**1**, No. 4, 465–482 (1993).Google Scholar - 126.U. V. Egorov and V. A. Kondratiev, “On the Lagrange problem,”
*C. R. Acad. Sci. Paris. Sér. 1*,**317**, 1149–1153 (1993).zbMATHMathSciNetGoogle Scholar - 127.V. A. Kondratiev and V. A. Nikishin, “On isolated singularities of solutions of equations of Emden-Fowler type,”
*Differ. Uravn.*,**29**, No. 6, 1025–1038 (1993).Google Scholar - 128.V. A. Kondratief and A. A. Kon’kov, “Properties of solutions of a class on nonlinear second-order equations,”
*Mat. Sb.*,**185**, No. 9, 81–94 (1994).Google Scholar - 129.S. D. Eidelman and V. A. Kondratiev, “On positive solutions of the Emden-Fowler quasilinear system of arbitrary order,”
*Russ. J. Math. Phys.*,**2**, No. 4, 535–540 (1994).zbMATHGoogle Scholar - 130.V. A. Kondratiev and S. D. Eidelman, “On positive solutions of quasilinear second-order elliptic equations,”
*Dokl. Akad. Nauk SSSR*,**334**, No. 4, 427–429 (1994).Google Scholar - 131.V. A. Kondratiev and L. Veron, “Asymptotic homogenization of solutions of some nonlinear parabolic or elliptic equations,” Université Francous Rabelais-Tours, Preprint No. 76/94 (1994), pp. 1–56.Google Scholar
- 132.V. A. Kondratiev and V. A. Nikishin, “On asymptotics near a piecewise-smooth boundary of singular solutions of semilinear elliptic equations,”
*Mat. Zametki*,**56**, No. 1, 50–56 (1994).MathSciNetGoogle Scholar - 133.Yu. V. Egorov and V. A. Kondratiev, “On some estimates of the eigenvalues of elliptic operators,” in:
*Proc. of the Max Planck-Arbeitsgruppe*, Teubner, Potsdam (1994), pp. 1–54.Google Scholar - 134.V. A. Kondratiev and O. A. Oleinik, “On the behaviour of solutions of a class of nonlinear elliptic second-order equations in a neighborhood of a conic point of the boundary,” in:
*Boundary-Value Problems and Integral Equations in Nonsmooth Domains*, Lect. Notes Pure Appl. Math., Vol. 167 (1995), pp. 151–161.Google Scholar - 135.U. V. Egorov and V. A. Kondratiev, “On moments of negative eigenvalues of an elliptic operator,”
*Math. Nachr.*,**174**, 73–79 (1995).zbMATHMathSciNetCrossRefGoogle Scholar - 136.Yu. V. Egorov and V. A. Kondratiev, “On estimates of the minimal eigenvalue in the problem of stability of a column,”
*Vestn. Mosk. Univ. Ser. 1 Mat. Mekh.*, No. 2, 7–15 (1995).Google Scholar - 137.V. A. Kondratiev and O. A. Oleinik, “An approach to the study of asymptotic properties of solutions of nonlinear elliptic equations in cylindrical domains,”
*Usp. Mat. Nauk*,**50**, No. 4, 149 (1995).Google Scholar - 138.V. A. Kondratiev and O. A. Oleinik, “On the behavior at infinity of solutions of a class of nonlinear elliptic equations in cylindrical domains,”
*Dokl. Ross. Akad. Nauk*,**341**, No. 4, 446–449 (1995).Google Scholar - 139.V. A. Kondratiev, “On the asymptotics of solutions of weakly nonlinear elliptic equations,” in:
*Differential Equations and Their Applications*[in Russian], Izd. Samarsk. Gos. Tekhn. Univ., Samara (1995).Google Scholar - 140.V. A. Kondratiev, “On asymptotics of solutions of parabolic and elliptic systems,” in:
*Summary of the Conf. on Partial Differential Equations. Max-Planck-Institut für Mathematik*, Teubner, Bonn (1995), p. 3.Google Scholar - 141.V. A. Kondratiev and V. A. Tarakanov, “On singularity of temperature gradients in a neighborhood of a sharp cut in a compound body,”
*Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela*, No. 6, 70–72 (1995).Google Scholar - 142.G. V. Grishina and V. A. Kondratiev, “On the asymptotic behavior of solutions of some semilinear parabolic equations in cylindrical domains,” in:
*Spectral and Evolutional Problems, Proc. of the Fourth Crimean Autumn Mathematical School-Symposium (CROMSH-IV)*, Simferopol (1995).Google Scholar - 143.V. A. Kondratiev and V. A. Nikishin, “On positive solutions of a semilinear equation,”
*J. Math. Sci.*,**80**, No. 5, 2084–2092 (1996).MathSciNetCrossRefGoogle Scholar - 144.U. V. Egorov and V. A. Kondratiev,
*On Estimates of the First Eigenvalue in Some Sturm-Liouville Problems*, Université Paul Sabatier, UFR MIG, Toulouse, Preprint (1996), pp. 1–71.Google Scholar - 145.V. A. Kondratiev and O. A. Oleinik, “On asymptotics of solutions of nonlinear second-order elliptic equations in cylindrical domains,” in:
*Partial Differential Equations and Functional Analysis*, Birkhäuser (1996), pp. 160–173.Google Scholar - 146.Yu. V. Egorov and V. A. Kondratiev, “Estimates of the first eigenvalue for some Sturm-Liouville problems,”
*Usp. Mat. Nauk*,**51**, No. 3, 73–144 (1996).Google Scholar - 147.V. A. Kondratiev and Yu. V. Egorov, “On spectral theory of elliptic operators,”
*Operator Theory: Advances and Applications*,**89**, 1–325 (1996).MathSciNetGoogle Scholar - 148.U. V. Egorov and V. A. Kondratiev, “On a nonlinear boundary problem for a heat equation,”
*C. R. Acad. Sci. Paris. Sér. 1*,**322**, 55–58 (1996).zbMATHMathSciNetGoogle Scholar - 149.Yu. V. Egorov and V. A. Kondratiev, “On moments of elliptic operators,”
*Dokl. Ross. Akad. Nauk*,**5**, 585–587 (1996).Google Scholar - 150.Yu. V. Egorov and V. A. Kondratiev, “On the optimal shape of a column,”
*Dokl. Ross. Akad. Nauk*,**6**, 727–730 (1996).Google Scholar - 151.V. A. Kondratiev and O. A. Oleinik, “On large-time asymptotics of solutions of nonlinear evolutionary equations and systems,”
*Usp. Mat. Nauk*,**51**, No. 5, 159–160 (1996).Google Scholar - 152.V. A. Kondratiev, “On asymptotics of solutions of parabolic and elliptic equations in unbounded domains,” in:
*Abstracts of the Int. Colloquium of Differential Equations*, Plovdiv (1996), p. 120.Google Scholar - 153.Yu. V. Egorov and V. A. Kondratiev, “Estimates of the first eigenvalue for the Dirichlet problem,”
*C. R. Acad. Sci. Paris. Sér. 1*,**321**, No. 2, 129–131 (1996).MathSciNetGoogle Scholar - 154.V. A. Kondratiev, “On solutions of nonlinear elliptic equations in cylindrical domains,”
*Fundam. Prikl. Mat.*,**2**, No. 3, 863–874 (1996).MathSciNetGoogle Scholar - 155.V. A. Kondratiev, “On nonlinear boundary-value problems in cylindrical domains,”
*Tr. Sem. Petrovsk.*, No. 19, 235–261 (1996).Google Scholar - 156.V. A. Kondratiev and F. Nicolosi, “On some properties of the solutions of quasilinear degenerate elliptic equations,”
*Math. Nachr.*,**182**, 243–260 (1996).zbMATHMathSciNetCrossRefGoogle Scholar - 157.V. A. Kondratiev, “On asymptotic behavior of solutions of some parabolic equations in cylindrical domains,” in:
*4th Symposium on Mathematical Analysis and Its Applications, Arandelovac*, 1997, pp. 3–4.Google Scholar - 158.V. A. Kondratiev, “The asymptotic behavior to nonlinear parabolic problems,” in:
*Abstracts of the Eighth Int. Colloquium on Differential Equations*, Plovdiv (1997), p. 124.Google Scholar - 159.V. A. Kondratiev, “On the estimates of the eigenvalues of some multipoints problems,”
*Abstracts of Mark Krein Int. Conf. “Operator Theory and Applications,” Odessa*, 1997, pp. 53.Google Scholar - 160.Yu. V. Egorov and V. A. Kondratiev, “On blow-up solutions for parabolic equations of second order,” in:
*Differential Equations, Asymptotic Analysis, and Mathematical Physics*, Math. Research, Vol. 100, Akademie, Berlin (1997), pp. 77–84.Google Scholar - 161.Yu. V. Egorov and V. A. Kondratiev, “On blow-up solutions for parabolic equation,” in:
*Abstracts, Differential Equations and Mathematical Physics*, Mezniereba, Tbilisi (1997), p. 64.Google Scholar - 162.M. V. Borsuk and V. A. Kondratiev, “On the behaviour of solutions of the Dirichlet problem for semilinear second-order elliptic equations in a neighbourhood of a conical boundary point,”
*Nonlinear Boundary-Value Problems*, No. 7, 47–56 (1997).Google Scholar - 163.V. A. Kondratiev and L. Veron, “Asymptotic behavior of solutions of some nonlinear parabolic or elliptic equations,”
*Asymptotic Anal.*, No. 14, 117–156 (1997).Google Scholar - 164.A. P. Buslaev, V. A. Kondratiev, and A. I. Nazarov, “On periodic solutions of a nonlinear equation,”
*Differ. Uravn.*,**33**, No. 11, 1569 (1997).Google Scholar - 165.Yu. V. Egorov and V. A. Kondratiev, “On a problem of O. A. Oleinik,”
*Usp. Mat. Nauk*,**52**, No. 6, 159–160 (1997).Google Scholar - 166.V. A. Kondratiev, “On asymptotic properties of a nonlinear heat equation,”
*Differ. Uravn.*,**34**, No. 2, 246–256 (1998).MathSciNetGoogle Scholar - 167.A. P. Buslaev, V. A. Kondratiev, and A. I. Zazarov, “A family of extremal problems and related properties of an integral,”
*Mat. Zametki*,**64**, No. 6, 830–838 (1998).Google Scholar - 168.Yu. V. Egorov, V. A. Kondratiev, and O. A. Oleinik, “Asymptotic behavior of solutions of nonlinear elliptic and parabolic systems in cylindrical domains,”
*Mat. Sb.*,**189**, No. 3, 45–68 (1998).MathSciNetGoogle Scholar - 169.Yu. V. Egorov and V. A. Kondratiev, “On eigenvalues of the Dirichlet problem,”
*Dokl. Ross. Akad. Nauk*,**360**, No. 3, 451–453 (1998).zbMATHGoogle Scholar - 170.Yu. V. Egorov and V. A. Kondratiev, “On blow-up solutions for parabolic equations of second order,”
*Nonlinear Boundary-Value Problems*,**8**, 89–94 (1998).Google Scholar - 171.Yu. V. Egorov and V. A. Kondratiev, “On estimates of the first eigenvalue in some elliptic problems,”
*Operator Theory: Advances and Applications*,**102**, 73–84 (1998).MathSciNetGoogle Scholar - 172.Yu. V. Egorov and V. A. Kondratiev, “Two theorems on blow-up solutions for parabolic equations,”
*Nonlinear Boundary-Value Problems*,**8**, 159–163 (1998).Google Scholar - 173.Yu. V. Egorov and V. A. Kondratiev, “Two theorems on blow-up solutions for semilinear parabolic equations of second order,”
*C. R. Acad. Sci. Paris. Sér. 1*,**326**, 903–908 (1998).Google Scholar - 174.L. A. Bagirov and V. A. Kondratiev,
*On Asymptotic Properties of Solutions of the Diffusion Equations. I. An Equation with Operator Coefficient*, Preprint No. 605, Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow (1998).Google Scholar - 175.L. A. Bagirov and V. A. Kondratiev,
*On Asymptotic Properties of Solutions of the Diffusion Equations. II. Construction and Justification of an Asymptotic Expansion*, Preprint No. 618, Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow (1998).Google Scholar - 176.L. A. Bagirov and V. A. Kondratiev, “Asymptotics of solutions of semilinear boundary-value problems,”
*Usp. Mat. Nauk*,**53**, No. 4, 184–185 (1998).Google Scholar - 177.V. A. Kondratiev, “Completeness of root functions of elliptical operators in Banach spaces,”
*Russ. J. Math. Phys.*,**6**, No. 2, 194–201 (1999).MathSciNetGoogle Scholar - 178.Yu. V. Egorov and V. A. Kondratiev, “On blow-up solutions of second-order parabolic equations,”
*Dokl. Ross. Akad. Nauk*,**364**, No. 5, 590–592 (1999).zbMATHGoogle Scholar - 179.V. A. Kondratiev, “On properties of solutions to nonlinear parabolic equations of the second order,”
*J. Dynam. Control Systems*,**5**, 523–546 (1999).MathSciNetCrossRefGoogle Scholar - 180.Yu. V. Egorov and V. A. Kondratiev, “On asymptotic behavior in an infinite cylinder of solutions to an elliptic equation of second order,”
*Applicable Anal.*,**71**, No. 1–4, 25–39 (1999).zbMATHMathSciNetGoogle Scholar - 181.Yu. V. Egorov and V. A. Kondratiev, “On some global existence theorem for a semilinear parabolic problem,”
*Applied Nonlinear Analysis*, 67–78 (1999).Google Scholar - 182.V. A. Kondratiev and M. A. Shubin, “Discreteness of the spectrum for Schrödinger operators on manifolds of bounded geometry,”
*Operator Theory: Advances and Applications*,**110**, 185–226 (1999).Google Scholar - 183.V. A. Kondratiev and M. A. Shubin, “Conditions of discreteness of the spectrum for the Schrödinger operator on a manifold,”
*Funkts. Anal. Prilozhen.*,**33**, No. 3, 85–87 (1999).Google Scholar - 184.V. A. Galaktionov, Yu. V. Egorov, V. A. Kondratiev, and S. I. Pokhozhaev, “On the conditions of the existence of solutions of a quasilinear inequality in a half-space,”
*Mat. Zametki*,**67**, 150–153 (2000).Google Scholar - 185.Y. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, “On the necessary conditions of global existence of solutions to a quasilinear inequality in the half-space,”
*C. R. Acad. Sci. Paris. Sér. 1*, 93–98 (2000).Google Scholar - 186.Yu. V. Egorov and V. A. Kondratiev, “On the asymptotic behavior of solutions to a semilinear elliptic boundary problem in an unbounded domain,”
*C. R. Acad. Sci. Paris. Sér. 1*, 785–790 (2000).Google Scholar - 187.V. A. Kondratiev, “Asymptotic properties of solutions of nonlinear parabolic equations,” in:
*Proc. of the Voronezh Spring School on Mathematics “Pontryagin Workshop-XI,”*Pt. 1, Izd. Voronezh Univ., Voronesh (2000), 95–108.Google Scholar - 188.S. D. Eidelman and V. A. Kondratiev, “On the summability in
*L*^{p}of positive solutions of elliptic equations,”*Russ. J. Math. Phys.*,**7**, No. 2, 206–215 (2000).MathSciNetGoogle Scholar - 189.Y. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, “On the necessary conditions of global existence to a quasilinear inequality in the half-space,”
*C. R. Acad. Sci. Paris. Sér. 1*, 93–98 (2000).Google Scholar - 190.V. A. Galaktionov, Yu. V. Egorov, V. A. Kondratiev, and S. I. Pokhozhaev, “On the conditions of the existence of solutions of a quasilinear inequality in half-space,”
*Mat. Zametki*,**67**, 150–153 (2000).Google Scholar - 191.Yu. V. Egorov and V. A. Kondratiev, “On the asymptotic behavior of solutions to a semilinear elliptic boundary problem in an unbounded domain,”
*C. R. Acad. Sci. Paris. Sér. 1*, 785–790 (2000).Google Scholar - 192.Yu. V. Egorov and V. A. Kondratiev, “On global solutions to a semilinear elliptic boundary problem in an unbounded domain,”
*Rend. Inst. Mat. Univ. Trieste*,**31**, Suppl. 2, 87–102 (2000).zbMATHMathSciNetGoogle Scholar - 193.V. A. Kondratiev, “On asymptotic properties of solutions of nonlinear parabolic equations,” in:
*Modern Methods in the Theory of Boundary-Value Problems. Proc. of the Voronezh Mathematical School “Pontryagin Workshop-XI,”*Voronezh (2000), pp. 95–108.Google Scholar - 194.Yu. V. Egorov, V. A. Kondratiev, and B.-W. Schulze, “On completeness of root functions of an elliptic operator on a manifold with conical points,”
*C. R. Acad. Sci. Paris. Sér. 1*,**333**, 551–556 (2001).zbMATHMathSciNetGoogle Scholar - 195.Yu. V. Egorov and V. A. Kondratiev, “On the asymptotic behavior of solutions of a semilinear elliptic boundary problem in unbounded cone,”
*C. R. Acad. Sci. Paris. Sér. 1*,**332**, 705–710 (2001).zbMATHMathSciNetGoogle Scholar - 196.Yu. V. Egorov and V. A. Kondratiev, “On the behavior of solutions of a nonlinear boundary-value problem for a second-order elliptic equation in an unbounded domain,”
*Tr. Mosk. Mat. Obshch.*,**62**, 131–161 (2001).Google Scholar - 197.Yu. V. Egorov and V. A. Kondratiev, “The behavior of the solutions of a nonlinear boundary-value problem for a second-order elliptic equation in an unbounded domain,”
*Trans. Moscow Math. Soc.*,**62**, 125–147 (2001).Google Scholar - 198.Yu. V. Egorov and V. A. Kondratiev, “On the asymptotic behavior of solutions to a semilinear elliptic boundary problem,”
*Funct. Differ. Equ.*,**8**, No. 1–2, 163–181 (2001).zbMATHMathSciNetGoogle Scholar - 199.Yu. V. Egorov, V. A. Kondratiev, and B.-W. Schulze, “On completeness of root functions of elliptic boundary problems in a domain with conical points on the boundary,”
*C. R. Acad. Sci. Paris. Sér. 1*,**334**, 649–654 (2002).zbMATHMathSciNetGoogle Scholar - 200.V. A. Kondratiev and M. A. Shubin, “Discreteness of the spectrum for the magnetic Schrödinger operators,”
*Comm. Partial Differential Equations*,**27**, No. 3–4, 477–525 (2002).zbMATHMathSciNetGoogle Scholar - 201.V. A. Kondratiev and V. A. Nikishkin, “On the behavior of solutions of elliptic equations in a neighborhood of a crack with nonsmooth front,”
*Russ. J. Math. Phys.*,**9**, No. 1, 106–111 (2002).MathSciNetGoogle Scholar - 202.Yu. V. Egorov and V. A. Kondratiev, “On the asymptotic behavior of solutions of a semilinear elliptic boundary problem in unbounded domains,” in:
*Proc. of the Steklov Institute of Mathematics*,**236**, 434–448 (2002).MathSciNetGoogle Scholar - 203.L. A. Bagirov and V. A. Kondratiev, “On asymptotic properties of solutions of the diffusion equations,”
*Tr. Sem. Petrovsk.*, No. 22, 37–70 (2002).Google Scholar - 204.V. A. Kondratiev, “Discreteness of the spectrum for magnetic Schrödinger operators,” in:
*Abstracts, Int. Conf. on Differential and Functional Differential Equations, Moscow, Russia, August 11–17*, 2002.Google Scholar - 205.V. A. Kondratiev and G. A. Chechkin, “Homogenization of the Lavrentiev-Bitsadze equation in a semi-perforated domain,”
*Differ. Uravn.*,**38**, No. 10, 1390–1396 (2002).MathSciNetGoogle Scholar - 206.Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S.I. Pohozaev, “On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range,”
*C. R. Acad. Sci. Paris. Sér. 1*,**335**, 805–810 (2002).zbMATHMathSciNetGoogle Scholar - 207.G. A. Chechkin and V. A. Kondratiev, “Homogenization of the Lavrent’ev-Bitsadze equation in a partially perforated domain,”
*Differ. Equations*,**38**, No. 10, 1481–1487 (2002).zbMATHCrossRefGoogle Scholar - 208.V. A. Kondratiev, V. Liskevich, and Z. Sobol, “Second-order semilinear elliptic inequalities in exterior domains,”
*J. Differential Equations*,**187**, 429–455 (2002).MathSciNetCrossRefGoogle Scholar - 209.V. A. Kondrat’ev, “On the existence of positive solutions of second-order semilinear elliptic equations in cylindrical domains,”
*Russ. J. Math. Phys.*,**10**, No. 1, 11–20 (2003).Google Scholar - 210.V. A. Kondratiev, “On the existence of positive solutions of second-order semilinear elliptic equations in unbounded domains,”
*Funct. Differ. Equ.*,**10**, No. 1–2, 283–290 (2003).zbMATHMathSciNetGoogle Scholar - 211.V. A. Kondratiev and G. A. Chechkin, “Asymptotics of solutions of the Lavrentiev-Bitsadze equations in a semi-perforated domain,”
*Differ. Uravn.*,**39**, No. 5, 645–655 (2003).MathSciNetGoogle Scholar - 212.V. A. Kondratiev and V. A. Nikishkin, “On the asimptotics of solutions of elliptic equations in a neighborhood of a crack with nonsmooth front,”
*Georgian Math. J.*,**10**, No. 3, 543–548 (2003).MathSciNetGoogle Scholar - 213.I. V. Astashova, A. V. Filinovskii, V. A. Kondratiev, and L. A. Muravey, “Some problems in the qualitative theory of differential equations,”
*J. Natur. Geom.*,**23**, 1–126 (2003).Google Scholar - 214.V. Liskevich, V. A. Kondratiev, Z. Sobol, and O. Us, “Estimates of heat kernels for a class of second-order elliptic operators with applications to semi-linear inequalities in exterior domains,”
*J. London Math. Soc.*,**69**, 107–127 (2004).zbMATHMathSciNetCrossRefGoogle Scholar - 215.Yu. V. Egorov and V. A. Kondratiev, “Asymptotic behavior of solutions of a nonlinear parabolic boundary-value problem,”
*Dokl. Ross. Akad. Mauk*,**397**, No. 5, 590–592 (2004).Google Scholar - 216.Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, “Global solutions of higher-order parabolic semilinear equations,”
*Adv. Differential Equations*,**9**, No. 9–10, 1009–1038 (2004).zbMATHMathSciNetGoogle Scholar - 217.V. A. Kondratiev, V. G. Mazya, and M. A. Shubin, “Discreteness and strict positivity criteria for magnetic Schrödinger operators,”
*Comm. Partial Differential Equations*,**29**, No. 3–4, 39–52 (2004).MathSciNetGoogle Scholar - 218.V. A. Kondratiev, V. Liskevich, and V. Moroz, “Positive solutions to superlinear second-order divergence-type elliptic equations in cone-like domains,”
*Ann. Inst. H. Poincaré*,**22**, 25–43 (2005).zbMATHMathSciNetCrossRefGoogle Scholar - 219.V. A. Kondratiev, “On positive solutions of weakly nonlinear second-order elliptic equations in cylindrical domains,”
*Tr. Mat. Inst. Steklova*,**250**, 183–191 (2005).Google Scholar - 220.V. A. Kondratiev, “Positive solutions to weakly nonlinear elliptic equations of second order on cylindrical domains,” in:
*Proc. of the Steklov Institute of Mathematics*,**250**, 1–9 (2005).Google Scholar - 221.V. A. Kondratiev, V. Liskevich, V. Moroz, and Z. Sobol, “A critical phenomenon for sublinear elliptic equations in cone-like domains,”
*Bull. London Math. Soc.*,**37**, 585–591 (2005).zbMATHMathSciNetCrossRefGoogle Scholar - 222.M. V. Borsuk and V. A. Kondratiev,
*Elliptic Boundary-Value Problems of Second Order in Piecewise Smooth Domains*, North-Holland Mathematical Library, Vol. 69, North-Holland (2006).Google Scholar

## Copyright information

© Springer Science+Business Media, Inc. 2007