Advertisement

Journal of Mathematical Sciences

, Volume 141, Issue 4, pp 1494–1505 | Cite as

Some reflections on mathematicians’ views of quantization

  • D. Sternheimer
Article

Abstract

We start with a short presentation of the difference in attitude between mathematicians and physicists even in their treatment of physical reality, and look at the paradigm of quantization as an illustration. In particular, we stress the differences in motivation and realization between the Berezin and deformation quantization approaches, exposing briefly Berezin’s view of quantization as a functor. We continue with a schematic overview of deformation quantization and of its developments in contrast with the latter and discuss related issues, in particular, the spectrality question. We end by a very short survey of two main avatars of deformation quantization, quantum groups and quantum spaces (especially noncommutative geometry) presented in that perspective. Bibliography: 74 titles.

Keywords

Quantum Group Deformation Theory Symplectic Manifold Star Product Noncommutative Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. S. Agarwal and E. Wolf, “Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I, II, III,” Phys. Rev., D2, 2161–2186, 2187–2205, 2206–2225 (1970).MathSciNetGoogle Scholar
  2. 2.
    A. Aspect, R. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett., 49, No. 25, 1804–1807 (1982).CrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Avis, H. Imai, T. Ito, and Y. Sasaki, “Two-party Bell inequalities derived from combinatorics via triangular elimination,” J. Phys. A, 38, No. 50, 10971–10987 (2005).Google Scholar
  4. 4.
    H. Basart, M. Flato, A. Lichnerowicz, and D. Sternheimer, “Deformation theory applied to quantization and statistical mechanics,” Lett. Math. Phys., 8, 483–494 (1984).CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, “Deformation theory and quantization. I. Deformations of symplectic structures,” Ann. Physics, 111, 61–110 (1978). “II. Physical applications,” ibid, 111–151.CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    J. S. Bell, “On the problem of hidden variables in quantum mechanics,” Rev. Modern Phys., 38, 447–452 (1966).CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    F. A. Berezin, “Canonical operator transformation in representation of secondary quantization,” Soviet Phys. Dokl., 6, 212–215 (1961).MathSciNetzbMATHGoogle Scholar
  8. 8.
    F. A. Berezin, The Method of Second Quantization, Academic Press, New York-London (1966).zbMATHGoogle Scholar
  9. 9.
    F. A. Berezin, “Quantization,” Math. USRR Izv., 38, 1109–1165 (1975). “Quantization in complex symmetric spaces,” Math. USRR Izv., 39, 341–379 (1976).Google Scholar
  10. 10.
    F. A. Berezin, “General concept of quantization,” Comm. Math. Phys., 40, 153–174 (1975).CrossRefMathSciNetGoogle Scholar
  11. 11.
    F. A. Berezin, “Feynman path integrals in a phase space,” Uspekhi Fiz. Nauk, 132, 493–548 (1980).MathSciNetGoogle Scholar
  12. 12.
    F. A. Berezin, Introduction to Superanalysis, Math. Phys. Appl. Math., 9, D. Reidel Publishing Co., Dordrecht (1987).zbMATHGoogle Scholar
  13. 13.
    F. A. Berezin and M. A. Shubin, The Schrödinger Equation, Kluwer Acad. Publ., Dordrecht (1991).zbMATHGoogle Scholar
  14. 14.
    F. A. Berezin and D. A. Leites, “Supermanifolds,” Dokl. Akad. Nauk SSSR, 224, No. 3, 505–508 (1975).MathSciNetGoogle Scholar
  15. 15.
    P. Bonneau, M. Flato, M. Gerstenhaber, and G. Pinczon, “The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations,” Comm. Math. Phys., 161, 125–156 (1994).CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    P. Bonneau, M. Gerstenhaber, A. Giaquinto, and D. Sternheimer, “Quantum groups and deformation quantization: explicit approaches and implicit aspects,” J. Math. Phys., 45, 3703–3741 (2004).CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    A. S. Cattaneo and G. Felder, “A path integral approach to the Kontsevich quantization formula,” Comm. Math. Phys., 212, 591–611 (2000). “On the globalization of Kontsevich’s star product and the perturbative Poisson sigma model,” Prog. Theor. Phys. Suppl., 144, 38–53 (2001).CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    A. Connes, Noncommutative Geometry, Academic Press, San Diego (1994). “Noncommutative differential geometry,” Inst. Hautes Études Sci. Publ. Math., No. 62, 257–360 (1985).zbMATHGoogle Scholar
  19. 19.
    A. Connes, “A short survey of noncommutative geometry,” J. Math. Phys., 41, 3832–3866 (2000).CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    A. Connes, “Cyclic cohomology, noncommutative geometry and quantum group symmetries,” Lect. Notes Math., 1831, 1–71 (2004).MathSciNetGoogle Scholar
  21. 21.
    A. Connes and M. Dubois-Violette, “Moduli space and structure of noncommutative 3-spheres,” Lett. Math. Phys., 66, 99–121 (2003).CrossRefMathSciNetGoogle Scholar
  22. 22.
    A. Connes, M. Flato, and D. Sternheimer, “Closed star-products and cyclic cohomology,” Lett. Math. Phys., 24, 1–12 (1992).CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    A. Connes and D. Kreimer, “From local perturbation theory to Hopf and Lie algebras of Feynman graphs,” Lett. Math. Phys., 56, 3–15 (2001).CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    E. B. Davies, “Semi-classical states for non-self-adjoint Schrödinger operators,” Comm. Math. Phys., 200, 35–41 (1999). “Semi-classical analysis and pseudo-spectra,” J. Diff. Equations, 216, 153–187 (2005).CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    N. Dencker, J. Sjöstrand, and M. Zworski, “Pseudospectra of semiclassical (pseudo-) differential operators,” Comm. Pure Appl. Math., 57, 384–415 (2004).CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    M. De Wilde and P. B. A. Lecomte, “Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds,” Lett. Math. Phys., 7, 487–496 (1983).CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    P. A. M. Dirac, Lectures on Quantum Mechanics, Yeshiva University, New York (1964). “Generalized Hamiltonian dynamics,” Canad. J. Math., 2, 129–148 (1950).Google Scholar
  28. 28.
    J. Dito, “Star-product approach to quantum field theory: the free scalar field,” Lett. Math. Phys., 20, 125–134 (1990). “Star-products and nonstandard quantization for K-G equation,” J. Math. Phys., 33, 791–801 (1992).CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    J. Dito, “An example of cancellation of infinities in star-quantization of fields,” Lett. Math. Phys., 27, 73–80 (1993). “Star-produits en dimension infinie: le cas de la théorie quantique des champs,” Thesis, Université de Bourgogne, Dijon (1993).CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    G. Dito (= J. Dito), “Deformation quantization of covariant fields,” in: Deformation Quantization (Strasbourg 2001), IRMA Lect. Math. Theor. Phys., 1, Walter de Gruyter, Berlin (2002), pp. 55–66.Google Scholar
  31. 31.
    G. Dito and D. Sternheimer, “Deformation quantization: genesis, developments and metamorphoses,” in: Deformation Quantization (Strasbourg 2001), IRMA Lect. Math. Theor. Phys., 1, Walter de Gruyter, Berlin (2002), pp. 9–54.Google Scholar
  32. 32.
    M. R. Douglas, H. Liu, G. Moore, and B. Zwiebach, “Open string star as a continuous Moyal product,” J. High Energy Phys., 0204, No. 22 (2002).Google Scholar
  33. 33.
    M. R. Douglas and N. A. Nekrasov, “Noncommutative field theory,” Rev. Mod. Phys., 73, 977–1029 (2001).CrossRefMathSciNetGoogle Scholar
  34. 34.
    V. Drinfeld, “Quantum groups,” in: Proceedings of the International Congress of Mathematicians (Berkeley 1986), Amer. Math. Soc., Providence, Rhode Island (1987), pp. 798–820.Google Scholar
  35. 35.
    B. V. Fedosov, “A simple geometrical construction of deformation quantization,” J. Diff. Geom., 40, 213–238 (1994). Deformation Quantization and Index Theory, Akademie Verlag, Berlin (1996). “The Atiyah-Bott-Patodi method in deformation quantization,” Comm. Math. Phys., 209, 691–728 (2000).MathSciNetzbMATHGoogle Scholar
  36. 36.
    M. Flato and C. Fronsdal, “Composite electrodynamics,” J. Geom. Phys., 5, 37–61 (1988).CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    M. Flato, C. Frønsdal, and D. Sternheimer, “Singletons, physics in AdS universe and oscillations of composite neutrinos,” Lett. Math. Phys., 48, 109–119 (1999).CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    M. Flato, L. K. Hadjiivanov, and I. T. Todorov, “Quantum deformations of singletons and of free zero-mass fields,” Found. Phys., 23, 571–586 (1993).CrossRefMathSciNetGoogle Scholar
  39. 39.
    M. Flato, P. Hillion, and D. Sternheimer, “Un groupe de type Poincaré associé à l’équation de Dirac-Weyl,” C. R. Acad. Sci. Paris, 264, 85–88 (1967). M. Flato and P. Hillion, “Poincaré-like group associated with neutrino physics, and some applications,” Phys. Rev., D1, 1667–1673 (1970).Google Scholar
  40. 40.
    M. Flato, C. Piron, J. Gréa, D. Sternheimer, and J. P. Vigier, “Are Bell’s inequalities concerning hidden variables really conclusive?,” Helv. Phys. Acta, 48, No. 2, 219–225 (1975).MathSciNetGoogle Scholar
  41. 41.
    M. Flato and D. Sternheimer, “Topological quantum groups, star products and their relations,” St.Petersburg Math. J., 6, 242–251 (1994).MathSciNetGoogle Scholar
  42. 42.
    A. Froelicher and A. Nijenhuis, “A theorem on stability of complex structures,” Proc. Nat. Acad. Sci. USA, 43, 239–241 (1957).CrossRefzbMATHGoogle Scholar
  43. 43.
    J. Fröhlich, “Atomism and quantization,” Talk at the Simonfest. Caltech, 27 March 2006; http://math.caltech.edu/SimonFest/Abstracts/frohlich abst.pdf. Research Group in Mathematical Physics (J. Fröhlich, A. Knowles, and A. Pizzo), “Atomism and quantization,” ETHZ preprint (September 2006), posted as mp_arc 06-323.
  44. 44.
    C. Fronsdal, “Some ideas about quantization,” Rep. Math. Phys., 15, 111–145 (1978). F. Bayen and C. Fronsdal, “Quantization on the sphere,” J. Math. Phys., 22, 1345–1349 (1981).CrossRefMathSciNetGoogle Scholar
  45. 45.
    C. Frønsdal (with an appendix by M. Kontsevich), “Quantization on curves,” to appear in Lett. Math. Phys.; arXiv:math-ph/0507021.Google Scholar
  46. 46.
    I. Gelfand, V. Retakh, and M. Shubin, “Fedosov manifolds,” Adv. Math., 136, 104–140 (1998).CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    M. Gerstenhaber, “On the deformation of rings and algebras,” Ann. Math., 79, 59–103 (1964); (II), ibid., 84, 1–19 (1966); (IV), ibid., 99, 257–276 (1974).CrossRefMathSciNetGoogle Scholar
  48. 48.
    M. Gerstenhaber, “On the deformation of sheaves of rings,” in: Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo (1969), pp. 149–157.Google Scholar
  49. 49.
    M. Gerstenhaber and S. D. Schack, “Algebraic cohomology and deformation theory,” in: Deformation Theory of Algebras and Structures and Applications, M. Hazewinkel and M. Gerstenhaber (eds.), NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht (1988), pp. 11–264.Google Scholar
  50. 50.
    J. W. v. Goethe, “Maximen und Reflexionen,” Nr. 1005, in: Werke, 60B (1827–1842); http://www.wissenim-netz.info/literatur/goethe/maximen/1-16.htm#1005.
  51. 51.
    A. Groenewold, “On the principles of elementary quantum mechanics,” Physica, 12, 405–460 (1946).CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    G. ’t Hooft, “How does God play dice? (Pre-)determinism at the Planck scale,” in: Quantum [Un]speakables (Vienna, 2000), Springer, Berlin (2002), pp. 307–316. “Determinism beneath Quantum Mechanics,” in: Proceedings of the Conference “Quo Vadis Quantum Mechanics,” Philadelphia 2002; arXiv:quant-ph/0212095.Google Scholar
  53. 53.
    E. Ínönü and E. P. Wigner, “On the contraction of groups and their representations,” Proc. Nat. Acad. Sci. USA, 39, 510–524 (1953).CrossRefzbMATHGoogle Scholar
  54. 54.
    M. Jimbo, “A q-difference algebra of \(\mathcal{U}(\mathfrak{g})\) and the Yang-Baxter equation,” Lett. Math. Phys., 10, 63–69 (1985).CrossRefMathSciNetzbMATHGoogle Scholar
  55. 55.
    K. Kodaira and D. C. Spencer, “On deformations of complex analytic structures,” Ann. Math., 67, 328–466 (1958).CrossRefMathSciNetGoogle Scholar
  56. 56.
    M. Kontsevich, “Deformation quantization of Poisson manifolds,” Lett. Math. Phys., 66, 157–216 (2003). “Operads and motives in deformation quantization,” Lett. Math. Phys., 48, 35–72 (1999).CrossRefMathSciNetzbMATHGoogle Scholar
  57. 57.
    M. Kontsevich, “Deformation quantization of algebraic varieties,” Lett. Math. Phys., 56, 271–294 (2001).CrossRefMathSciNetzbMATHGoogle Scholar
  58. 58.
    B. Kostant, “Quantization and unitary representations,” Lect. Notes Math., 170, 87–208 (1970). “On the definition of quantization,” in: Géométrie Symplectique et Physique Mathématique (Colloq. Int. CNRS, No. 237), Éds. CNRS, Paris (1975), pp. 187–210. “Graded manifolds, graded Lie theory, and prequantization. Differential geometrical methods in mathematical physics,” Lect. Notes Math., 570, 177–306 (1977).MathSciNetCrossRefGoogle Scholar
  59. 59.
    V. Mathai, R. B. Melrose, and I. M. Singer, “Fractional analytic index,” J. Diff. Geom., 74, 265–292 (2006); arXiv: math.DG/0402329.MathSciNetzbMATHGoogle Scholar
  60. 60.
    R. A. Minlos, “Felix Alexandrovich Berezin (A brief scientific biography),” in: Contemporary Mathematical Physics, F. A. Berezin Memorial Volume, R. L. Dobrushin, R. A. Minlos, M. A. Shubin, and A. M. Vershik (eds.), Amer. Math. Soc. Transl., Ser. 2, 175 (1996), pp. 1–13. Reproduced (with minor corrections) in Lett. Math. Phys., 74, 5–19 (2005).Google Scholar
  61. 61.
    J. E. Moyal, “Quantum mechanics as a statistical theory,” Proc. Cambridge Phil. Soc., 45, 99–124 (1949).MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    F. Nadaud, “Generalized deformations, Koszul resolutions, Moyal products,” Rev. Math. Phys., 10, No. 5, 685–704 (1998). Thèse, Dijon (janvier 2000).CrossRefMathSciNetzbMATHGoogle Scholar
  63. 63.
    R. Nest and B. Tsygan, “Algebraic index theorem,” Comm. Math. Phys., 172, 223–262 (1995). “Algebraic index theorem for families,” Adv. Math., 113, 151–205 (1995). “Formal deformations of symplectic manifolds with boundary,” J. Reine Angew. Math., 481, 27–54 (1996).CrossRefMathSciNetzbMATHGoogle Scholar
  64. 64.
    H. Omori, Y. Maeda, and A. Yoshioka, “Weyl manifolds and deformation quantization,” Adv. Math., 85, 225–255 (1991). “Existence of a closed star product,” Lett. Math. Phys., 26, 285–294 (1992).CrossRefMathSciNetGoogle Scholar
  65. 65.
    Pankaj Sharan, “Star-product representation of path integrals,” Phys. Rev. D, 20, 414–418 (1979).CrossRefMathSciNetGoogle Scholar
  66. 66.
    M. Rieffel, “Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance,” Mem. Amer. Math. Soc., 168, No. 796, 67–91 (2004).MathSciNetGoogle Scholar
  67. 67.
    I. E. Segal, “A class of operator algebras which are determined by groups,” Duke Math. J., 18, 221–265 (1951).CrossRefMathSciNetzbMATHGoogle Scholar
  68. 68.
    D. Sternheimer, “Deformation quantization: Twenty years after,” in: Particles, Fields, and Gravitation (Lodz 1998), J. Rembieliński (ed.), Amer. Inst. Phys., New York (1998), pp. 107–145. “In retrospect: A personal view on Moshé Flato’s scientific legacy,” in: Conférence Moshé Flato 1999, Math. Phys. Studies, 21, Kluwer Acad. Publ., Dordrecht (2000), pp. 31–416.Google Scholar
  69. 69.
    D. Sternheimer, “Quantization is deformation,” in: Noncommutative Geometry and Representation Theory in Mathematical Physics, J. Fuchs et al. (eds.), Contemp. Math., 391, Amer. Math. Soc., Providence, Rhode Island (2005), pp. 331–352.Google Scholar
  70. 70.
    D. Sternheimer, “Quantization: deformation and/or functor?,” Lett. Math. Phys., 74, 293–309 (2005).CrossRefMathSciNetzbMATHGoogle Scholar
  71. 71.
    L. N. Trefethen and M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton Univ. Press, Princeton, New Jersey (2005).zbMATHGoogle Scholar
  72. 72.
    H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York (1931), edited translation of Gruppentheorie und Quantenmechanik, Hirzel Verlag, Leipzig (1928). “Quantenmechanik und Gruppentheorie,” Z. Physik, 46, 1–46 (1927).zbMATHGoogle Scholar
  73. 73.
    E. P. Wigner, “Quantum corrections for thermodynamic equilibrium,” Phys. Rev., 40, 749–759 (1932).CrossRefzbMATHGoogle Scholar
  74. 74.
    N. M. J. Woodhouse, Geometric Quantization, 2nd edition, The Clarendon Press, Oxford Univ. Press, New York (1992).zbMATHGoogle Scholar

Copyright information

© Daniel Sternheimer 2007

Authors and Affiliations

  • D. Sternheimer
    • 1
    • 2
  1. 1.Institut de Mathématiques de BourgogneUniversité de BourgogneDijonFrance
  2. 2.Department of MathematicsKeio UniversityYokohamaJapan

Personalised recommendations