Journal of Mathematical Sciences

, Volume 141, Issue 4, pp 1432–1451 | Cite as

Canonical representations on two-sheeted hyperboloids

  • V. F. Molchanov


The two-sheeted hyperboloid \(\mathcal{L}\) in ℝn can be identified with the unit sphere Ω in ℝn with the equator removed. Canonical representations of the group G = SO 0(n − 1, 1) on \(\mathcal{L}\) are defined as the restrictions to G of the representations of the overgroup \(\tilde G\) = SO 0(n, 1) associated with a cone. They act on functions and distributions on the sphere Ω. We decompose these canonical representations into irreducible constituents and decompose the Berezin form. Bibliography: 12 titles.


Symmetric Space Spherical Function Fourier Component Inversion Formula Boundary Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. A. Berezin, “Quantization in complex symmetric spaces,” Izv. Akad. Nauk SSSR Ser. Mat., 39, No. 2, 363–402 (1975). English translation: Math. USSR Izv., 9, 341–379 (1975).MathSciNetGoogle Scholar
  2. 2.
    G. van Dijk and S. C. Hille, “Canonical representations related to hyperbolic spaces,” J. Funct. Anal., 147, 109–139 (1997).CrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. I. McGraw-Hill, New York (1953).Google Scholar
  4. 4.
    A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Tables of Integral Transforms, Vol. II. McGraw-Hill, New York (1954).Google Scholar
  5. 5.
    L. I. Grosheva, “Canonical and boundary representations on the Lobachevsky space,” Vestnik Tambov Univ., 9, No. 3, 306–311 (2004).Google Scholar
  6. 6.
    V. F. Molchanov, “Harmonic analysis on homogeneous spaces,” in: Itogi Nauki i Tekhniki, Sovremennye problemy matematiki, Fundamentalnye Napravleniya, 59 (1990), pp. 5–144. English translation in: Encyclopaedia Math. Sci., 59, Springer, Berlin (1995), pp. 1–135.MathSciNetGoogle Scholar
  7. 7.
    V. F. Molchanov, “Quantization on para-Hermitian symmetric spaces,” Amer. Math. Soc. Transl., Ser. 2, 175, 81–95 (1996).MathSciNetGoogle Scholar
  8. 8.
    V. F. Molchanov, “Canonical and boundary representations on a hyperboloid of one sheet,” Acta Appl. Math., 81, Nos. 1–3, 191–204 (2004).CrossRefMathSciNetGoogle Scholar
  9. 9.
    V. F. Molchanov, “Canonical representations on the two-sheeted hyperboloid,” Indag. Math., 16, Nos. 3–4, 609–630 (2005).CrossRefGoogle Scholar
  10. 10.
    V. F. Molchanov and L. I. Grosheva, “Canonical and boundary representations on the Lobachevsky plane,” Acta Appl. Math., 79, Nos. 1, 2, 59–77 (2003).MathSciNetGoogle Scholar
  11. 11.
    A. M. Vershik, I. M. Gelfand, and M. I. Graev, “Representations of the group SL(2, R) where R is a ring of functions,” Russian Math. Surveys, 28, No. 5, 87–132 (1973).CrossRefGoogle Scholar
  12. 12.
    N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, Amer. Math. Soc., Providence, Rhode Island (1968).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. F. Molchanov
    • 1
  1. 1.G. R. Derzhavin Tambov State UnversityTambovRussia

Personalised recommendations