Journal of Mathematical Sciences

, Volume 139, Issue 6, pp 7087–7150 | Cite as

Necessary conditions of the minimum in an impulse optimal control problem

  • D. Yu. Karamzin
Article

Abstract

The paper is devoted to studying the impulse optimal control problem with inequality-type state constraints and geometric control constraints defined by a measurable multivalued mapping. The author obtains necessary optimality conditions in the form of the Pontryagin maximum principle and nondegeneracy conditions for the latter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Arutyunov, Necessary Extremum Conditions [in Russian], Faktorial, Moscow (1997).Google Scholar
  2. 2.
    A. V. Arutyunov, “Relaxations and perturbations of optimal control problems,” Tr. Mat. Inst. Ross. Akad. Nauk, 220, 27–34 (1998).MATHMathSciNetGoogle Scholar
  3. 3.
    A. V. Arutyunov, “Perturbations of constrained extremal problems and necessary optimality conditions,” In: Progress in Science and Technology, Series on Mathematical Analysis [in Russian], Vol. 27, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1989), pp. 147–235.Google Scholar
  4. 4.
    A. V. Arutyunov and N. T. Tynyanskii, “On the maximum principle in the state-constrained problem,” Izv. Akad. Nauk SSSR, Ser. Tekh. Kibern., 4, 60–68 (1984).MATHGoogle Scholar
  5. 5.
    A. V. Arutyunov, “On necessary optimality conditions in the state constrained problem,” Dokl. Akad. Nauk SSSR, 280, No. 5, 1033–1037 (1985).MATHMathSciNetGoogle Scholar
  6. 6.
    A. V. Arutyunov, “First-order necessary conditions in the state constrained optimal control problem,” Tr. Inst. Prikl. Mat. Tbilis. Univ., 27, 46–59 (1988).MATHMathSciNetGoogle Scholar
  7. 7.
    A. V. Arutyunov, “Maximum principle and second-order necessary optimality conditions in the optimal control problem with delays,” Soobshch. Akad. Nauk Grus.SSR, 122, No. 2, 265–268 (1986).MATHMathSciNetGoogle Scholar
  8. 8.
    A. V. Arutyunov, S. M. Aseev, and V. I. Blagodatskikh, “First-order necessary conditions in the optimal control problem for a differential inclusion with state constraints,” Mat. Sb., 184, No. 6, 3–32 (1993).MATHGoogle Scholar
  9. 9.
    A. V. Arutyunov and S. M. Aseev, “Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints,” SIAM J. Control Optim., 35, No. 3, 930–952 (1997).MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. V. Arutyunov, V. Jacimovic, and F. L. Pereira, “Second order necessary conditions of optimality for impulsive control problems,” Int. J. Dyn. Contr. Syst., 9, No. 1, 131–153 (2003).MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    A. V. Arutyunov, V. A. Dykhta, and F. L. Pereira, “Necessary conditions for impulsive nonlinear optimal control problems without a priori normality assumptions,” J. Optim. Theory Appl. (in press).Google Scholar
  12. 12.
    V. I. Blagodatskikh and A. F. Filippov, “Differential inclusions and optimal control,” Tr. Mat. Inst. Akad. Nauk SSSR, 169, 194–252 (1985).MATHMathSciNetGoogle Scholar
  13. 13.
    A. Bressan and F. Rampazzo, “Impulsive control systems with commutative vector fields,” J. Optim. Theory Appl. 71, 67–83 (1991).MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    F. Clarke, Optimization and Nonsmooth Analysis [Russian translation], Nauka, Moscow (1988).MATHGoogle Scholar
  15. 15.
    V. F. Dem’yanov, Minimax: Differentiability in Directions [in Russian], LGU, Leningrad (1974).Google Scholar
  16. 16.
    A. Ya. Dubovitskii and V. A. Dubovitskii, “Necessary conditions for the strong minimum in optimal control problems with degeneration of endpoint and state constraints,” Usp. Mat. Nauk, 40, No. 2, 175–176 (1985).MATHMathSciNetGoogle Scholar
  17. 17.
    A. Ya. Dubovitskii and A. A. Milyutin, “Extremum problems under constraints,” Dokl. Akad. Nauk SSSR, 149, No. 4, 759–762 (1963); Zh. Vychisl. Mat. Mat. Fiz., 5, No. 3, 395–453 (1965).MATHGoogle Scholar
  18. 18.
    V. A. Dykhta and O. N. Samsonyuk, Optimal Impulse Control with Applications [in Russian], Fizmatlit, Moscow (2000).Google Scholar
  19. 19.
    A. F. Filippov, “On certain problems of optimal regulation,” Vestn. MGU, Mat. Mekh., No. 2, 25–38 (1959).Google Scholar
  20. 20.
    A. F. Filippov, “Differential equations with discontinuous right-hand side,” Mat. Sb., 51, No. 2 100–128 (1966).Google Scholar
  21. 21.
    R. V. Gamkrelidze, Foundations of Optimal Control [in Russian], Tbilis. Univ., Tbilisi (1977).Google Scholar
  22. 22.
    M. I. Gusev, “On optimal control of generalized processes under nonconvex state constraints,” in: Differential Games and Control Problems [in Russian], UNTs Akad. Nauk SSSR, Sverdlovsk (1975).Google Scholar
  23. 23.
    A. D. Ioffe and V. M. Tikhomirov, “Several remarks on variational principles,” Mat. Zametki, 61, No. 2, 305–311 (1997).MATHMathSciNetGoogle Scholar
  24. 24.
    A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).MATHGoogle Scholar
  25. 25.
    A. P. Kartashev and B. L. Rozhdestvenskii, Mathematical Analysis [in Russian], Moscow (1984).Google Scholar
  26. 26.
    A. A. Kirillov and A. D. Gvishiani, Theorems and Problems of Functional Analysis [in Russian], Nauka, Moscow (1979).MATHGoogle Scholar
  27. 27.
    A. N. Kolmogorov and S. V. Fomin, Elements of Function Theory and Functional Analysis [in Russian], Nauka, Moscow (1968).Google Scholar
  28. 28.
    N. N. Krasovskii, Theory of Control Motion [in Russian], Nauka, Moscow (1968).Google Scholar
  29. 29.
    A. B. Kurzhanskii, “Optimal systems with impulse controls,” in: Differential Games and Control Problems [in Russian], UNTs, Akad. Nauk SSSR, Sverdlovsk (1975), pp. 131–156.Google Scholar
  30. 30.
    A. B. Kurzhanskii and Yu. S. Osipov, “On the control of a linear system by generalized forcings,” Differents. Uravn., 5, No. 8, 1360–1370 (1969).MATHGoogle Scholar
  31. 31.
    A. S. Matveev, “On necessary extremum conditions in an optimal control problem,” Differents. Uravn., 23, No. 4, 629–639 (1987).MATHGoogle Scholar
  32. 32.
    B. M. Miller, “Optimality conditions in generalized control problems,” Avtomat. Telemekh., No. 5, 50–58 (1992).Google Scholar
  33. 33.
    B. M. Miller, “Generalized solutions in nonlinear optimization problems with impulse control, I. Existence problem of a solution. II. Representation of a solution via a differential equation with a measure,” Avtomat. Telemekh., No. 4, 62–76 (1995); No. 5, 56–70 (1995).Google Scholar
  34. 34.
    I. P. Natanson, Theory of Functions of a Real Variable [in Russian], Nauka, Moscow (1974).Google Scholar
  35. 35.
    F. L. Pereira, “A maximum principle for impulsive control problems with state constraints,” Comput. Appl. Math. 19, No. 2, 137–155 (2000).MathSciNetMATHGoogle Scholar
  36. 36.
    F. L. Pereira and G. N. Silva, “Necessary conditions of optimality for vector-valued impulsive control problems,” Systems Control Lett., 40, 205–215 (2000).MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    F. L. Pereira and G. N. Silva, “Stability for impulsive control systems,” Dyn. Syst., 17, 421–434 (2002).MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    F. L. Pereira, A. Coimbra de Matos, and G. N. Silva, “Hamilton-Jacobi conditions for an impulsive control problem,” in: Nonlinear Control Systems, Fevereiro (2002), pp. 1297–1302.Google Scholar
  39. 39.
    F. L. Pereira and G. N. Silva, “Necessary conditions of optimality for vector-valued impulsive control problems,” Syst. Control Lett., 40, 205–215 (2000).MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1976).Google Scholar
  41. 41.
    W. Rudin, Functional Analysis [Russian translation], Mir, Moscow (1975).MATHGoogle Scholar
  42. 42.
    G. N. Silva and R. B. Vinter, “Measure differential inclusions,” J. Math. Anal. Appl., 202, 727–746 (1996).MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    G. N. Silva and R. B. Vinter, “Necessary conditions for optimal impulsive control problems,” SIAM J. Control Optim., 35, 1829–1846 (1997).MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    G. N. Silva, I. S. Litvinchev, M. Rojas-Medar, and A. J. V. Brandao, “State constraints in optimal impulsive controls, Comput. Appl. Math. 19, No. 2, 179–206 (2000).MathSciNetMATHGoogle Scholar
  45. 45.
    F. P. Vasil’ev, Numerical Methods for Solving Extremal Problems [in Russian], Moscow (1980).Google Scholar
  46. 46.
    R. B. Vinter and F. L. Pereira, “Necessary conditions for optimal control problems with discontinuous trajectories,” J. Econom. Dyn. Contr., 10, 115–118 (1986).MathSciNetCrossRefGoogle Scholar
  47. 47.
    R. B. Vinter and F. L. Pereira, “A maximum principle for optimal processes with discontinuous trajectories,” SIAM J. Control Optim., 26, 205–229 (1988).MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    R. B. Vinter and M. M. A. Ferreira, “When is the maximum principle for state constrained problems nondegenerate?” J. Math. Anal. Appl., 187, 438–467 (1994).MATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    J. Warga, Optimal Control of Differential and Functional Equations[Russian translation], Nauka, Moscow (1977).MATHGoogle Scholar
  50. 50.
    S. T. Zavalishin and A. N. Sesekin, Impulse Processes: Models and Applications [in Russian], Nauka, Moscow (1991).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • D. Yu. Karamzin
    • 1
  1. 1.Comp. Center Ross. Akad. NaukMoscowRussia

Personalised recommendations