Journal of Mathematical Sciences

, Volume 139, Issue 5, pp 6863–6901

Ellipsoidal methods for dynamics and control. Part I

  • P. Varaiya
  • A. B. Kurzhanski
  • A. B. Kurzhanski
Article

Abstract

This article is the first part of a survey devoted to the application of ellipsoidal methods to the solution of problems in control.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-P. Aubin and H. Frankowska, Set-Valued Calculus, Birkhauser, Boston (1990).Google Scholar
  2. 2.
    M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, Boston (1997).MATHGoogle Scholar
  3. 3.
    R. Bellman and R. Kalaba, Dynamic Programming and Modern Control Theory, Academic Press, New York (1965).MATHGoogle Scholar
  4. 4.
    D. P. Bertsekas, Dynamic Programming and Optimal Control, Athena Scientific (1995).Google Scholar
  5. 5.
    S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM (1994).Google Scholar
  6. 6.
    F. M. Callier and C. A. Desoer, Linear System Theory, Springer-Verlag, New York (1991).MATHGoogle Scholar
  7. 7.
    F. L. Chernouskoff State Estimation for Dynamic Systems, CRC Press (1994).Google Scholar
  8. 8.
    E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York (1955).MATHGoogle Scholar
  9. 9.
    M. G. Crandall, L. C. Evans, and P.-L. Lions, “Some properties of viscosity solutions of Hamilton-Jacobi equations,” Trans. Amer. Math. Soc., 282, No. 2, 487–502 (1984).MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    V. F. Demianov, Minimax and Directional Differentiability [in Russian], Leningrad Univ. Publ. (1974).Google Scholar
  11. 11.
    A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Academic, Dordrecht (1988).MATHGoogle Scholar
  12. 12.
    W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, New York (1993).Google Scholar
  13. 13.
    F. R. Gantmacher, Matrix Theory, Chelsea Publ., New York (1960).Google Scholar
  14. 14.
    J. E. Gayek, “A survey of techniques for approximating reachable and controllable sets,” in: Proc. IEEE Conf. on Decision and Control, Brighton (1991), pp. 1724–1729.Google Scholar
  15. 15.
    V. I. Gurman, The Extension Principle in Problems of Control [in Russian], Nauka, Moscow (1997).Google Scholar
  16. 16.
    T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, New Jersey (1980).MATHGoogle Scholar
  17. 17.
    N. Karmarkar, “A new polynomial-time algorithm for linear programming,” Combinatorica, 4, No. 4, 373–395 (1984).MATHMathSciNetGoogle Scholar
  18. 18.
    N. N. Krasovskii, Theory of Control of Motion [in Russian], Nauka, Moscow (1968).Google Scholar
  19. 19.
    N. N. Krasovskii, Rendezvous Game Problems, Nat. Tech. Inf. Service, Sprinfield, Virinia (1971).Google Scholar
  20. 20.
    N. N. Krasovski and A. N. Subbotin, Game-Theoretical Control Problems, Springer-Verlag, New York-Berlin-Heidelberg (1988).Google Scholar
  21. 21.
    A. B. Kurzhanski, Control and Observation under Uncertainty [in Russian], Nauka, Moscow (1977).Google Scholar
  22. 22.
    A. B. Kurzhanski and T. F. Filippova, “On the theory of trajectory tubes: A mathematical formalism for uncertain dynamics, viability and control,” in: Advances in Nonlinear Dynamics and Control, Ser. PSCT, 17, Boston (1993), pp. 122–188.MathSciNetGoogle Scholar
  23. 23.
    A. B. Kurzhanski and I. Valyi, Ellipsoidal Calculus for Estimation and Control, Birkhauser, Boston (1997).MATHGoogle Scholar
  24. 24.
    A. B. Kurzhanski and P. Varaiya, “Dynamic optimization for reachability problems,” J. Optim. Theory Appl., 108, No. 2, 227–251 (2001).MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. B. Kurzhanski and P. Varaiya, “On ellipsoidal techniques for reachability analysis, Part I: External approximations; Part II: Internal approximations, Box-valued constraints,” Optimiz. Methods Software, 17, 177–237 (2002).MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Ky Fan, “Minimax theorems,” Proc. Natl. Acad. Sci., 39, No. 1, 42–47 (1953).MATHCrossRefGoogle Scholar
  27. 27.
    E. B. Lee and L. Marcus, Foundations of Optimal Control Theory, Wiley, New York (1967).MATHGoogle Scholar
  28. 28.
    G. Leitmann, “Optimality and reachability via feedback controls,” in: Dynamic Systems and Microphysics (A. Blaquière and G. Leitmann, Eds.) (1982).Google Scholar
  29. 29.
    V. V. Nemytski and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press (1960).Google Scholar
  30. 30.
    S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag (2003).Google Scholar
  31. 31.
    I. G. Petrovski, Lectures on Ordinary Differential Equations [in Russian], Nauka, Moscow (1970).Google Scholar
  32. 32.
    L. S. Pontryagin, Ordinary Differential Equations [in Russian], Nauka, Moscow (1970).MATHGoogle Scholar
  33. 33.
    L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1961).Google Scholar
  34. 34.
    R. T. Rockafellar and R. J. Wets, Variational Analysis, Springer-Verlag, New York (1997).MATHGoogle Scholar
  35. 35.
    F. Schweppe, Uncertain Dynamic Systems, Prentice Hall, Englewood Cliffs, New Jersey (1973).Google Scholar
  36. 36.
    J. A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge Univ. Press (1999).Google Scholar
  37. 37.
    A. I. Subbotin, Generalized Solutions of First-Order Partial Differential Equations. The Dynamical Optimization Perspective, Birkhauser, Boston (1995).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • P. Varaiya
    • 1
  • A. B. Kurzhanski
    • 2
  • A. B. Kurzhanski
    • 2
  1. 1.University of California at BerkeleyUSA
  2. 2.Moscow State UniversityMoscow

Personalised recommendations