Journal of Mathematical Sciences

, Volume 139, Issue 2, pp 6417–6424 | Cite as

On the Littlewood-Paley theorem for arbitrary intervals

  • S. V. Kislyakov
  • D. V. Parilov


We extend the results of Rubio de Francia and Bourgain by showing that, for arbitrary mutually disjoint intervals Δk ⊂ ℤ+, arbitrary p ∈, (0, 2], and arbitrary trigonometric polynomials fk with supp \(\hat f_k \subset \Delta _k \), we have
$$\left\| {\sum\limits_k {f_k } } \right\|_{H^p (\mathbb{T})} \leqslant a_p \left\| {\left( {\sum\limits_k {\left| {f_k } \right|} ^2 } \right)^{1/2} } \right\|_{L^p (\mathbb{T})} $$
. The method is a development of that by Rubio de Francia. Bibliography: 9 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Rubio de Francia, “A Littlewood-Paley inequality for arbitrary intervals,” Rev. Mat. Iberoamer., 1, 1–13 (1985).MATHMathSciNetGoogle Scholar
  2. 2.
    J. Bourgain, “On square functions on the trigonometric system,” Bull. Soc. Math. Belg., 37, 20–26 (1985).MATHMathSciNetGoogle Scholar
  3. 3.
    J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland (1985).Google Scholar
  4. 4.
    S. V. Kislyakov, “Fourier coefficients of continuous functions and a class of multipliers,” Ann. Inst. Fourier, 38, 147–184 (1988).MATHMathSciNetGoogle Scholar
  5. 5.
    H. Tribel, Theory of Interpolation, Functional Spaces, and Differential Operators [Russian translation], Moscow (1980).Google Scholar
  6. 6.
    S. V. Kislyakov and Q. Xu, “Interpolation of weighted and vector-valued Hardy spaces,” Trans. Amer. Math. Soc., 343, 1–34 (1994).MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    B. S. Kashin and A. A. Saakyan, Orthogonal Series [in Russian], Moscow (1984).Google Scholar
  8. 8.
    J. Bourgain, “Vector-valued singular integrals and the H 1-BMO duality,” in: Probability Theory and Harmonic Analysis, J. A. Chao and W. A. Woyczyński (eds.), Pure and Appl. Math., 98, M. Dekker, New York and Basel (1983).Google Scholar
  9. 9.
    A. Zigmund, Trigonometric Series [Russian translation], Vol. 1, Moscow (1965).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. V. Kislyakov
    • 1
  • D. V. Parilov
    • 1
  1. 1.St. Petersburg Department of the Steklov Mathematical InstituteSt.PetersburgRussia

Personalised recommendations