Journal of Mathematical Sciences

, Volume 138, Issue 6, pp 6067–6230 | Cite as

Asymptotics of solutions of higher-dimensional integrable equations and their perturbations

  • O. M. Kiselev


This paper considers asymptotics of solutions of higher-dimensional nonlinear integrable equations (such as the Kadomtsev-Petviashvili equation, the Davey-Stewartson equations, etc.) and also that of their perturbations.


Soliton Principal Term Inverse Scattering Method Goursat Problem Dirac System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ablowitz and H. Segur, Solitons and the Inverse Scattering Method [Russian translation], Mir, Moscow (1989).Google Scholar
  2. 2.
    L. A. Aizenberg and A. P. Yuzhakov, Integral Representations and Residues in Higher-Dimensional Complex Analysis [in Russian], Nauka, Novosibirsk (1979).Google Scholar
  3. 3.
    I. A. Anders, V. P. Kotlyarov, and E. Ya. Khruslov, “Curvilinear asymptotic solitons of the Kadomtsev-Petviashvili equation,” Teor. Mat. Fiz., 99, No. 1, 27–35 (1994).zbMATHMathSciNetGoogle Scholar
  4. 4.
    V. I. Arnol’d, A. N. Varchenko, and S. M. Gusein-Zade, Singularities of Differentiable Mappings. Monodromy and Asymptotics [in Russian], Nauka, Moscow (1984).zbMATHGoogle Scholar
  5. 5.
    S. A. Akhmanov, and R. V. Khokhlov, Problems of Nonlinear Optics [in Russian], VINITI, Moscow (1964).Google Scholar
  6. 6.
    R. F. Bikbaev and V. O. Tarasov, “Inhomogeneous boundary-value problem on the semiaxis for the sine-Gordon equation,” Algebra Analiz, 3, No. 4, 78–99 (1991).zbMATHMathSciNetGoogle Scholar
  7. 7.
    N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in Nonlinear Oscillation Theory [in Russian], Nauka, Moscow (1974).Google Scholar
  8. 8.
    S. P. Burtsev, “Damping of oscillations of the soliton in media with negative dispersion law,” ZhETF, 88 461–469 (1985).MathSciNetGoogle Scholar
  9. 9.
    V. S. Buslaev, “Use of the determinant representation of solutions of the Korteweg-de Vries equation for studying their asymptotic representation for large time,” Usp. Mat. Nauk, 36, No. 4, 217–218 (1981).Google Scholar
  10. 10.
    S. A. Vakulenko, “Structure forming and waves in nonlinear dissipative inhomogeneous media,” Dissertation, St.-Petersburg (1992).Google Scholar
  11. 11.
    V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1988).zbMATHGoogle Scholar
  12. 12.
    R. R. Gadyl’shin and O. M. Kiselev, “On the soliton-free structure of the perturbed soliton solution of the Davey-Stewartson equation,” Teor. Mat. Fiz., 106, No. 2, 167–173 (1996).MathSciNetzbMATHGoogle Scholar
  13. 13.
    R. R. Gadyl’shin and O. M. Kiselev, “Structural instability of the soliton of the Davey-Stewartson equation II,” Teor. Mat. Fiz., 118, No. 3, 354–361 (1999).MathSciNetGoogle Scholar
  14. 14.
    F. D. Gakhov, Boundary-Value Problems [in Russian], Nauka, Moscow (1977).zbMATHGoogle Scholar
  15. 15.
    V. Gerdzhikov and E. Khristov, “On evolutionary problems solved by the inverse scattering method,” Bolg. Fiz. Zh., 7, No. 1, 28–41 (1980).MathSciNetGoogle Scholar
  16. 16.
    V. S. Gerdzhikov and E. Kh. Khristov, “On the expansion in the product of solutions of two Dirac systems,” Mat. Zametki, 28, 501–512 (1980).zbMATHMathSciNetGoogle Scholar
  17. 17.
    P. G. Grinevich, “Scattering transform for the two-dimensional Schrodinger operator for one energy and the related integrable equations of mathematical physics,” Dissertation, Chernogolovka (1999).Google Scholar
  18. 18.
    P. G. Grinevich and S. V. Manakov, “Inverse scattering problem for the two-dimensional Schrö dinger operator, \(\overline \partial\)-method, and nonlinear equations,” Funktsional. Anal. i Prilozhen., 20, No. 2, 14–24 (1986).zbMATHMathSciNetGoogle Scholar
  19. 19.
    P. G. Grinevich and R. G. Novikov, “Analogs of multisoliton potentials for the two-dimensional Schrödinger operator,” Funktsional. Anal. i Prilozhen., 19, No. 4, 32–42 (1985).zbMATHMathSciNetGoogle Scholar
  20. 20.
    S. Yu. Dobrokhotov and V. P. Maslov, “Finite-gap almost periodic solutions in the WKB approximations,” In: Progress in Science and Technology, Series on Contemporary Problems in Mathematics [in Russian], Vol. 15, All-Union Institute for Scienti.c and Technical Information. USSR Academy of Sciences, Moscow (1980), pp. 3–94.Google Scholar
  21. 21.
    S. Yu. Dobrokhotov, “Resonance correction to the adiabatically perturbed finite-gap almost-periodic solution of the Korteweg-de Vries equation”, Mat. Zametki, 44, No. 4, 551–555 (1988).zbMATHMathSciNetGoogle Scholar
  22. 22.
    S. Yu. Dobrokhotov, “Resonances in the asymptotics of the solution of the Cauchy problem for the Schrödinger equation with rapidly oscillating finite-gap potential,” Mat. Zametki, 44, No. 3, 319–340 (1988).zbMATHMathSciNetGoogle Scholar
  23. 23.
    S. Yu. Dobrokhotov and I. M. Krichever, “Multiphase solutions of the Benjamin-Ono equation and their averages,” Mat. Zametki, 49, No. 6, 42–59 (1991).zbMATHMathSciNetGoogle Scholar
  24. 24.
    R. Dodd, J. Eilbeck, J. Gibbon, and Ch. Morris, Solitons and Nonlinear Wave Equations [Russian translation], Mir, Moscow (1988).zbMATHGoogle Scholar
  25. 25.
    V. S. Dryuma, “On the analytical solution of the two-dimensional Korteweg-de Vries equation,” ZhETF Letters, 19, 753–757 (1974).Google Scholar
  26. 26.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Nonlinear equations of the Korteweg-de Vries type, finite-gap linear operators, and Abelian varieties,” Usp. Mat. Nauk. 31, No. 1, 55–136 (1976).zbMATHMathSciNetGoogle Scholar
  27. 27.
    V. G. Dubrovskii, “Application of the inverse scattering method to constructing exact solutions of (2_+ 1)-dimensional integrable evolutionary equations,” Dissertation, Novosibirsk (1999).Google Scholar
  28. 28.
    V. E. Zakharov, “Instability and nonlinear oscillations of solitons,” ZhETF Letters, 22, 364 (1985).Google Scholar
  29. 29.
    V. E. Zakharov and S. V. Manakov, “Asymptotic behavior of nonlinear wave systems integrable via the inverse scattering method,” ZhETF, 71, 203–215 (1976).MathSciNetGoogle Scholar
  30. 30.
    V. E. Zakharov and S. V. Manakov, “Higher-dimensional nonlinear integrable systems and methods for constructing their solutions,” Zap. Nauch. Semin. LOMI, 133, 77–91 (1984).zbMATHMathSciNetGoogle Scholar
  31. 31.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Soliton Theory: The Inverse Scattering Method [in Russian], Nauka. Moscow (1980).Google Scholar
  32. 32.
    V. E. Zakharov and A. B. Shabat “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation in a nonlinear moving medium,” ZhETF, 61, 118–134 (1971).Google Scholar
  33. 33.
    V. E. Zakharov and A. B. Shabat, “Scheme for integrating nonlinear evolutionary equations of mathematical physics via the inverse scattering method. I,” Funktsional. Anal. i Prilozhen., 6, No. 3, 43–53 (1974).MathSciNetGoogle Scholar
  34. 34.
    A. M. Il’in, Concordance of Asymptotic Expansions of Boundary-Value Problems [in Russian], Nauka, Moscow (1989).Google Scholar
  35. 35.
    A. R. Its, “Asymptotics of solutions of the nonlinear Schrodinger equation and isomonodromy deformations of systems of linear differential equations,” Dokl. Akad. Nauk SSSR, 261, No. 1, 14–18 (1981).zbMATHMathSciNetGoogle Scholar
  36. 36.
    A. R. Its and V. E. Petrov, “Isomonodromy solution of the sine-Gordon equation and the temporal asymptotics of its rapidly decaying solutions,” Dokl. Akad. Nauk SSSR, 265, No. 3, 1302–1304 (1982).zbMATHMathSciNetGoogle Scholar
  37. 37.
    B. B. Kadomtsev and V. I. Petviashvili, “On the stability of solitary waves in weakly dispersing media,” Dokl. Akad. Nauk SSSR, 192, No. 4, 753–756 (1970).zbMATHGoogle Scholar
  38. 38.
    L. A. Kalyakin, “Long-wave asymptotics of the higher-dimensional Boussinesq equation,” in: Asymptotic Properties of Solutions of Differential Equations [in Russian], BNTs UrO Akad. Nauk SSSR, Ufa (1988), pp. 28–44.Google Scholar
  39. 39.
    L. A. Kalyakin, “Long-wave asymptotics. Integrable equations as the asymptotic limit of nonlinear systems,” Usp. Mat. Nauk, 44, No. 1, 5–34 (1989).zbMATHMathSciNetGoogle Scholar
  40. 40.
    L. A. Kalyakin, “Perturbation of the soliton of the KdV,” Teor. Mat. Fiz., 192, 62–77 (1992).MathSciNetGoogle Scholar
  41. 41.
    L. A. Kalyakin, “To the problem on the first correction in the soliton perturbation theory,” Mat. Sb., 186No. 7, 51–76 (1995).zbMATHMathSciNetGoogle Scholar
  42. 42.
    V. I. Karpman and E. M. Maslov, “Structure of the tails forming under the action of perturbations on solitons,” ZhETF, 73, 537 (1977).MathSciNetGoogle Scholar
  43. 43.
    O. M. Kiselev, “Asymptotics of the kink of the perturbed sine-Gordon equationn,” Teor. Mat. Fiz., 93No. 1, 39–48 (1992).zbMATHMathSciNetGoogle Scholar
  44. 44.
    O. M. Kiselev, “Solution of the Goursat problem for the Maxwell-Bloch system,” Teor. Mat. Fiz., 98, No. 29-37 (1994).Google Scholar
  45. 45.
    O. M. Kiselev, “Formal solution of the Goursat problem for the sine-Gordon equation,” in: Integrability in Dynamical Systems [in Russian], Ufa (1994), pp. 17–26.Google Scholar
  46. 46.
    O. M. Kiselev, “Asymptotics of higher-dimensional Cauchy integral with rapidly oscillating exponential,” Mat. Zametki, 58, No. 2, 231–242 (1995).zbMATHMathSciNetGoogle Scholar
  47. 47.
    O. M. Kiselev, “Fourier method for the linearized Davey-Stewartson equation I,” in: Complex Analysis, Differential Equations, Numerical Methods, and Applications. III. Differential Equations [in Russian], Ufa (1996), pp. 93–97.Google Scholar
  48. 48.
    O. M. Kiselev, “Asymptotics of a soliton-free solution of the Davey-Stewartson equation II,” Differents. Uravn., 33, No. 6, 812–819 (1997).zbMATHMathSciNetGoogle Scholar
  49. 49.
    O. M. Kiselev, “Asymptotics of solution of the Cauchy problem for the Davey-Stewartson equation I,” Teor. Mat. Fiz., 114, No. 1, 104–114 (1998).zbMATHMathSciNetGoogle Scholar
  50. 50.
    O. M. Kiselev, “Basis functions connected with the two-dimensional Dirac system,” Funktsional. Anal. i Prilozhen., 32, No. 1, 56–59 (1998).zbMATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    O. M. Kiselev, “Asymptotics of solution of the two-dimensional Dirac system with rapidly oscillating coefficients,” Mat. Sb., 190, No. 2, 71–92 (1999).zbMATHMathSciNetGoogle Scholar
  52. 52.
    O. M. Kiselev, “Perturbation of a solitary wave of the nonlinear Klein-Gordon equation,” Sib. Mat. Zh., 41, No. 2, 345–358 (2000).zbMATHMathSciNetGoogle Scholar
  53. 53.
    A. N. Kolmogorov and S. V. Kolmogorov, Elements of Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1989).zbMATHGoogle Scholar
  54. 54.
    I. M. Krichever, “Integration of nonlinear equations via the algebraic geometry method,” Funktsional. Anal. i Prilozhen., 11, No. 1, 15–31 (1977).zbMATHGoogle Scholar
  55. 55.
    I. M. Krichever, “Analog of the d’Alembert formula for the principal chiral field equation and the sine-Gordon equation,” Dokl. Akad. Nauk SSSR, 253, No. 2, 288–292 (1980).zbMATHMathSciNetGoogle Scholar
  56. 56.
    I. M. Krichever, “’Hessians’ of integrals of the KdV equation and perturbations of finite-gap solutions,” Dokl. Akad. Nauk SSSR, 270, No. 6, 1213–1217 (1983).MathSciNetGoogle Scholar
  57. 57.
    I. M. Krichever, “Evolution of the Whitham zone in the Korteweg-de Vries theory,” Dokl. Akad. Nauk SSSR, 295, No. 2, 345–348 (1987).zbMATHMathSciNetGoogle Scholar
  58. 58.
    I. M. Krichever, “Averaging method for two-dimensional ‘integrable’ equations,” Funktsional. Anal. i Prilozhen., 22, No. 3, 37–52 (1988).zbMATHMathSciNetGoogle Scholar
  59. 59.
    I. M. Krichever, “Spectral theory of two-dimensional periodic operators,” Usp. Mat. Nauk, 44, no. 2, 121–184 (1989).zbMATHMathSciNetGoogle Scholar
  60. 60.
    P. P. Kulish and V. D. Lipovskii, “On the Hamiltonian interpretation of the inverse scattering method for the Davey-Stewartson equation,” Zap. Nauch. Semin. LOMI, 54, 161 (1987).zbMATHGoogle Scholar
  61. 61.
    A. N. Leznov, M. V. Savel’ev, and V. G. Smirnov, “Group representation theory and the integration of nonlinear dynamical systems,” Teor. Mat. Fiz., 48, No. 1, 3–12 (1981).zbMATHMathSciNetGoogle Scholar
  62. 62.
    J. Leray, Differential and Integral Calculi on a Complex Analytic Manifold [Russian translation], Mir, Moscow (1961).Google Scholar
  63. 63.
    V. D. Lipovskii, “Hamiltonian structure of the KP-II equation in the class of decaying data,” Funktsional. Anal. i Prilozhen., 20, No. 4, 35–45 (1986).zbMATHMathSciNetGoogle Scholar
  64. 64.
    S. V. Manakov, “Nonlinear Fraunhofer diffraction,” ZhETF, 65, No. 10, 1392–1398 (1973).Google Scholar
  65. 65.
    V. P. Maslov, Complex WKB Method in Nonlinear Equations [in Russian], Nauka, Moscow (1977).zbMATHGoogle Scholar
  66. 66.
    V. P. Maslov and G. A. Omel’yanov, “On the Hugoniot-type conditions for infinitely narrow solutions of the simple wave equations,” Sib. Mat. Zh., 24, No. 5, 172–182 (1983).zbMATHMathSciNetGoogle Scholar
  67. 67.
    E. M. Maslov, “To the soliton perturbation theory in the second approximation,” Teor. Mat. Fiz., 42, No. 3, 362–373 (1980).Google Scholar
  68. 68.
    V. P. Maslov and G. A. Omel’yanov, “Asymptotic soliton-like solutions of equations with a small dispersion,” Usp. Mat. Nauk, 36, No. 3, 63–126.Google Scholar
  69. 69.
    L. P. Nizhnik, Inverse Problems for Hyperbolic Equations [in Russian], Naukova Dumka, Kiev (1991).zbMATHGoogle Scholar
  70. 70.
    S. P. Novikov, “Periodic Korteweg-de Vries problem,” Funktsional. Anal. i Prilozhen., 8, No. 3, 54–66.Google Scholar
  71. 71.
    R. G. Novikov and G. M. Khenkin, “\(\overline \partial\)-equation in the higher-dimensional scattering problem,” Usp. Mat. Nauk, 42, No. 3, 93–152 (1987).zbMATHMathSciNetGoogle Scholar
  72. 72.
    V. Yu. Novokshenov, “Asymptotics as t → ∞ of the solution of the Cauchy problem for the nonlinear Schrodinger equation,” Dokl. Akad. Nauk SSSR, 251, No. 4, 799–801 (1980).zbMATHMathSciNetGoogle Scholar
  73. 73.
    V. Yu. Novokshenov, “Asymptotics as t → ∞ of solutions of the Cauchy problem for the two-dimensional generalization of the Toda lattice,” Izv. Akad. Nauk SSR, Ser. Mat., 48, No. 2, 372–410 (1984).MathSciNetGoogle Scholar
  74. 74.
    A. Newell, Solitons in Mathematics and Physics [Russian translation], Mir, Moscow (1989).zbMATHGoogle Scholar
  75. 75.
    P. Olver, Asymptotics and Special Functions [Russian translation], Nauka, Moscow (1990).zbMATHGoogle Scholar
  76. 76.
    D. Yu. Ostapenko, A. P. Pal’-Val’, and E. Ya. Khruslov, “Uniform asymptotic formulas for curvilinear solitons of the Kadomtsev-Petviashvili equations,” Teor. Mat. Fiz., 108, No. 2, 205–211 (1996).zbMATHMathSciNetGoogle Scholar
  77. 77.
    D. E. Pelinovskii, Private Communication.Google Scholar
  78. 78.
    D. E. Pelinovskii and Yu. A. Stepanyants, “Self-focusing instability of plane solitons in media with positive dispersion,” ZhETF, 104, 3387–3400 (1993).Google Scholar
  79. 79.
    V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasma and Atmosphere [in Russian], Energoatomizdat, Moscow (1989).Google Scholar
  80. 80.
    M. Sall’, “Davey-Stewartson equations,” Zap. Nauch. Semin. LOMI, 180, 161–169 (1990).Google Scholar
  81. 81.
    A. L. Sakhnovich, “Goursat problem for the sine-Gordon equation,” Dokl. Akad. Nauk USSR, Ser. A., Fiz.-Mat. Tekh. Nauki, No. 12, 14–17 (1989).Google Scholar
  82. 82.
    E. K. Sklyanin, “Boundary conditions for integrable equations,” Funktsional. Anal. i Prilozhen., 21, No. 1, 86–87 (1987).zbMATHMathSciNetGoogle Scholar
  83. 83.
    L. A. Takhtadzhyan and L. D. Faddeev, “Essentially nonlinear model of the classical field theory,” Teor. Mat. Fiz., 21, No. 2, 160–174.Google Scholar
  84. 84.
    L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in Soliton Theory [in Russian], Nauka, Moscow (1986).Google Scholar
  85. 85.
    E. Ch. Titchmarsh, Eigenfunction Expansions Related to Second-Order Equations. Part 1 [Russian translation], Inostrannaya Literatura, Moscow (1960).Google Scholar
  86. 86.
    A. V. Faminskii, “Cauchy problem for the generalized KP equation,” Sib. Mat. Zh., 33, 160–172 (1992).zbMATHMathSciNetGoogle Scholar
  87. 87.
    M. V. Fedoryuk, Asymptotics. Integrals and Series [in Russian], Nauka, Moscow (1987).zbMATHGoogle Scholar
  88. 88.
    A. T. Filippov, Multi-Image Soliton [in Russian], Nauka, Moscow (1986).Google Scholar
  89. 89.
    I. T. Khabibullin, “Backlund transformation and integrable initial-value problems,” Mat. Zametki, 49, No. 4, 130–137 (1991).zbMATHMathSciNetGoogle Scholar
  90. 90.
    I. T. Khabibullin, “Integrable initial-value problem on the half-plane for the Ishimori and Davey-Stewartson equations,” Preprint, IM, VTs, UFA (1991), pp. 50–59.Google Scholar
  91. 91.
    I. T. Khabibullin, “Initial-value problem for the Ishimori equation compatible with the inverse scattering method,” Teor. Mat. Fiz., 91, No. 3, 363–376 (1992).zbMATHMathSciNetGoogle Scholar
  92. 92.
    R. Hua and V. Toeplitz, Homology and Feynman Integrals [Russian translation], Mir, Moscow (1969).Google Scholar
  93. 93.
    A. B. Shabat, “On the Korteweg-de Vries equation,” Dokl. Akad. Nauk SSSR, 211, No. 6, 1310–1313 (1973).MathSciNetGoogle Scholar
  94. 94.
    A. B. Shabat, “Nonlinear evolutionary equations and the Riemann problem,” in: Proc. of All-Union Conf. on Partial Differential Equations [in Russian], MGU, Moscow (1978), pp. 242–245.Google Scholar
  95. 95.
    M. M. Shakir’yanov, “Integrability in dynamical systems,” Preprint, IM, Vts, Ufa (1994), pp. 49–61.Google Scholar
  96. 96.
    L. Schwartz, Analysis, Vol. 1, 2 [Russian translation], Mir, Moscow (1972).zbMATHGoogle Scholar
  97. 97.
    M. J. Ablowitz, D. Bar Yaacov, and A. S. Fokas, “On the inverse scattering transform for the Kadomtsev-Petviashvili equation,” Stud. in Appl. Math., 69, 135–143 (1983).zbMATHMathSciNetGoogle Scholar
  98. 98.
    M. J. Ablowitz and R. Haberman, “Resonantly coupled nonlinear evolution equations,” J. math. phys., 16, 2301–2305 (1975).MathSciNetCrossRefGoogle Scholar
  99. 99.
    M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Method for solving sine-Gordon equation,” Phys. Rev. Lett., 30, 1262–1264 (1973).MathSciNetCrossRefGoogle Scholar
  100. 100.
    M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Nonlinear evolution equations of physical significance,” Phys. Rev. Lett., 31, 125–127 (1973).MathSciNetCrossRefGoogle Scholar
  101. 101.
    M. J. Ablowitz and A. C. Newell, “The decay of the continuous spectrum for the solutions of the Korteweg-de Vries equation,” J. Math. Phys., 1277–1284 (1973).Google Scholar
  102. 102.
    V. A. Arkadiev, A. K. Pogrebkov, and M. C. Polivanov, “Inverse scattering transform method and soliton solutions for Davey-Stewartson II equation,” Physica D, 36, 189–197 (1989).zbMATHMathSciNetCrossRefGoogle Scholar
  103. 103.
    D. Anker and N. C. Freeman, “On the soliton solutions for the Davey-Stewartson equation for long waves,” Proc. Roy. Soc. London A, 360, 529–540 (1978).zbMATHMathSciNetCrossRefGoogle Scholar
  104. 104.
    M. Boiti, J. J. Leon, L. Martina, and F. Pempinelli, “Scattering of localized solitons in the plane,” Phys. Lett., A32, 432–439 (1988).MathSciNetGoogle Scholar
  105. 105.
    M. Boiti, F. Pempinelli, and A. Pogrebkov, “Properties of solutions of the Kadomtsev-Petviashvili I equation,” J. Math. Phys., 35, No. 9, 4683–4718 (1994).zbMATHMathSciNetCrossRefGoogle Scholar
  106. 106.
    M. Boiti, F. Pempinelli, A. Pogrebkov, and B. Prinary, “Towards an inverse scattering theory for two-dimensional nondecaying potentials,” Teor. Mat. Fiz. 116, No. 1, 3–53 (1998).zbMATHGoogle Scholar
  107. 107.
    L. A. Bourdag, A. R. Its, S. V. Manakov, V. B. Matveev, and V. E. Zakharov, Phys.Lett. A, No. 3, 205 (1979).Google Scholar
  108. 108.
    J. Boussinesq, “Theorie des ondeset des remous qui se propagent,” J. Math. Pures Appl., 17, No. 2, 55–108 (1872).zbMATHGoogle Scholar
  109. 109.
    A. Davey and K. Stewartson, “On the three-dimensional packets of surface waves,” Proc. Roy. Soc. London. Ser. A., 338, 101–110 (1974).zbMATHMathSciNetCrossRefGoogle Scholar
  110. 110.
    P. Deift and X. Zhou, “A priori L p-estimates for solutions of Riemann-Hilbert problems,” Int. Math. Res. Not., No. 40, 2121–2154 (2002).Google Scholar
  111. 111.
    P. Deift and X. Zhou, “Long-time asymptotics for integrable systems. Higher order Theory,” Commun. Math. Phys., 165, 175–191 (1994).zbMATHMathSciNetCrossRefGoogle Scholar
  112. 112.
    P. Deift and X. Zhou, “Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space,” Commun. Pure Appl. Math., 56, No. 8, 1029–1077 (2003).zbMATHMathSciNetCrossRefGoogle Scholar
  113. 113.
    V. D. Djordjevic and L. G. Redekopp, “On two-dimensional packets of capillary-gravity waves,” J. Fluid Mech., 79, 703–714 (1977).zbMATHMathSciNetCrossRefGoogle Scholar
  114. 114.
    V. G. Dubrovskii, “The application of the \(\overline \partial\)-dressing method to some integrable (2+1)-dimensional nonlinear equations,” J. Phys. A. Math. and Gen., 29, 3617–3630.Google Scholar
  115. 115.
    V. G. Dubrovsky and B. G. Konopelchenko, “Coherent structures for the Ishimory equation. I. Localised solitons with stationary boundaries,” Physica D, 48, 367–395 (1991); “Coherent structures for the Ishimory equation. II. Time-dependent boundaries,” Physica D, 55, 1–13 (1992).MathSciNetCrossRefGoogle Scholar
  116. 116.
    V. G. Dubrovsky and B. G. Konopelchenko, “\(\overline \partial\)-dressing and exact solutions for the (2 + 1)-dimensional Harry Dym equation,” J. Phys. A: Math. and Gen., 27, 4619–4628 (1994).zbMATHMathSciNetCrossRefGoogle Scholar
  117. 117.
    H. Flaschka, M. G. Forest, and D. W. McLaughlin, “Multiphase averaging and the inverse spectral solution of the KdV equation,” Commun. Pure Appl. Math., 33, 739–784 (1980).zbMATHMathSciNetGoogle Scholar
  118. 118.
    R. J. Flesch and S. E. Trullinger, “Green’s functions for nonlinear Klein-Gordon kink perturbation theory,” J. Math. Phys., 28, No. 7, 1619–1631 (1987).zbMATHMathSciNetCrossRefGoogle Scholar
  119. 119.
    A. S. Fokas and M. J. Ablowitz, “On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane,” J. Math. Phys. 25, 2494 (1984).zbMATHMathSciNetCrossRefGoogle Scholar
  120. 120.
    A. S. Fokas and A. R. Its, “Soliton generation for initial-boundary value problems,” Phys. Rev. Lett., 68, 3117–3120 (1992).zbMATHMathSciNetCrossRefGoogle Scholar
  121. 121.
    A. S. Fokas and A. R. Its, “An initial-boundary problem for the sine-Gordon equation in laboratory coordinates,” Teor. Mat. Fiz., 92, No. 3, 386–403 (1992).MathSciNetGoogle Scholar
  122. 122.
    A. S. Fokas and P. M. Santini, “Dromions and a boundary-value problem for the Davey-Stewartson I equation,” Physica D, 44, 99 (1990).MathSciNetCrossRefGoogle Scholar
  123. 123.
    A. S. Fokas and L. J. Sung, “On the solvability of the N-wave, Davey-Stewartson, and Kadomtsev-Petviashvili equations,” Inverse Probl., 8, 673–708 (1992).zbMATHMathSciNetCrossRefGoogle Scholar
  124. 124.
    R. R. Gadyl’shin and O. M. Kiselev, “Asymptotics of perturbed soliton solution for the Davey-Stewartson II equation,”
  125. 125.
    C. G. Gardner, J. M. Greene, M. D. Kruskal, and K. M. Miura, “Method for solving the Korteweg-de Vries equation,” Phys. Rev. Lett., 19, 1095–1097.Google Scholar
  126. 126.
    J.-M. Ghidaglia and J.-K. Saut, “On the initial value problem for the Davey-Stewartson systems,” Nonlinearity, 3, 475–506 (1990).zbMATHMathSciNetCrossRefGoogle Scholar
  127. 127.
    P. G. Grinevich, “Nonsingularity of the direct scattering transform for the KP II equation with real exponentially decaying at infinity potential,” Lett. Math. Phys., 40, 59–73 (1997).zbMATHMathSciNetCrossRefGoogle Scholar
  128. 128.
    N. Hayashi, P. I. Naumkin, and J.-C. Saut, “Asymptotics for large time of global solutions to the generalized Kadomtsev-Petviashvili equation,” Commun. Math. Phys., 201, No. 3, 577–590 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  129. 129.
    N. Hayashi and H. Hirata, “Global existence and asymptotic behavior in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system,” Nonlinearity, 9, 1387–1409 (1996).zbMATHMathSciNetCrossRefGoogle Scholar
  130. 130.
    J. Hietarinta and R. Hirota, “Multidromion solutions to the Davey-Stewartson equation,” Phys. Lett. A, 145, 237 (1990).MathSciNetCrossRefGoogle Scholar
  131. 131.
    Y. Ishimori, Progr. in Theor. Phys., 72, 33 (1984).zbMATHMathSciNetCrossRefGoogle Scholar
  132. 132.
    V. I. Karpman and E. I. Maslov, “The structure of tails appearing under soliton perturbations,” ZhETF, 73, 537–559 (1977).MathSciNetGoogle Scholar
  133. 133.
    T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag (1966).Google Scholar
  134. 134.
    D. J. Kaup, “A perturbation expansion for the Zakharov-Shabat inverse scattering transform,” SIAM J. Appl. Math., 31, 121–133 (1976).zbMATHMathSciNetCrossRefGoogle Scholar
  135. 135.
    D. J. Kaup, “Closure of the squared Zakharov-Shabat eigenstates,” J. Math. Anal. Appl., 54, 849–864 (1976).zbMATHMathSciNetCrossRefGoogle Scholar
  136. 136.
    D. J. Kaup and A. C. Newell, “The Goursat and Cauchy problems for sine-Gordon equation,” SIAM J. Appl. Math., 34, 37–54 (1978).zbMATHMathSciNetCrossRefGoogle Scholar
  137. 137.
    D. J. Kaup, “The inverse scattering solution for the full three-wave resonant interaction,” Physica D, 1, 45 (1980).MathSciNetCrossRefGoogle Scholar
  138. 138.
    J. R. Keener and D. J. McLaughlin, “A Green’s function for a linear equation associated with solitons,” J. Math. Phys., 18, 2008 (1977).zbMATHCrossRefGoogle Scholar
  139. 139.
    O. M. Kiselev, “The interaction of a kink with a breather of small amplitude in the φ 4-model,” Russ. J. Math. Phys., 5, No. 1, 29–46 (1997).zbMATHMathSciNetGoogle Scholar
  140. 140.
    O. M. Kiselev, “Perturbation theory for the Dirac equation in two-dimensional space,” J. Math. Phys., 39, 2333–2345 (1998).zbMATHMathSciNetCrossRefGoogle Scholar
  141. 141.
    O. M. Kiselev, “Dromion perturbation for the Davey-Stewartson-1 equations,” J. Nonlinear Math. Phys., 7, No. 4, 411–422 (2000).zbMATHMathSciNetGoogle Scholar
  142. 142.
    O. M. Kiselev, “Asymptotics of a solution of the Kadomtsev-Petviashvili-2 equation,” Proc. Steklov Math. Inst., Suppl., No. 1, S107–S139 (2001).Google Scholar
  143. 143.
    Y. S. Kivshar and B. A. Malomed, “Solitons in nearly integrable systems,” Rev. Modern Phys., 61, No. 4, 763–915 (1989).CrossRefGoogle Scholar
  144. 144.
    B. G. Konopelchenko and B. T. Matkarimov, “Inverse spectral transform for nonlinear evolution equation generating the Davey-Stewartson and Ishimory equations,” Stud. Appl. Math., 82, 319–359 (1990).zbMATHMathSciNetGoogle Scholar
  145. 145.
    B. A. Malomed and E. M. Maslov, Phys. Rev. Lett. A, 160, 233–236 (1991).Google Scholar
  146. 146.
    S. V. Manakov, “The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev-Petviashvili equation,” Physica D, 3, Nos. 1–2, 420–427 (1981).MathSciNetCrossRefGoogle Scholar
  147. 147.
    S. V. Manakov, P. M. Santini, and L. A. Takchtadzhyan, “An asymptotic behavior of the solutions of the Kadomtsev-Petviashvili equations,” Phys. Lett. A, 75, 451–454 (1980).CrossRefGoogle Scholar
  148. 148.
    S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, and V. B. Matveev, “Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction,” Phys. Lett. A, 63, No. 3, 205–206 (1977).CrossRefGoogle Scholar
  149. 149.
    V. P. Maslov and G. A. Omel’yanov, Quasi-Linear Nonstationary Equations and Evolution of Interior Boundary Layers: Asymptotical Soliton-Like Solutions, BAIL-IV, Boole Press, Dublin (1986), pp. 362–367.Google Scholar
  150. 150.
    D. W. McLaughlin and A. C. Scott, “Perturbation analysis of flucson dynamics,” Phys. Rev. Lett., 18, No. 4, 1652–1697 (1978).Google Scholar
  151. 151.
    J. W. Miles, “The asymptotic solution of the Korteweg-de Vries equation in the absence of solitons,” Stud. Appl. Math., 60, 59–72 (1979).MathSciNetGoogle Scholar
  152. 152.
    R. M. Miura, “Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation,” J. Math. Phys., 9, 1202–1204 (1968).zbMATHMathSciNetCrossRefGoogle Scholar
  153. 153.
    A. C. Newell, “The inverse scattering transform,” in: Topics in Current Phys., 17 (1980). SpringerVerlag, New York, pp. 177–242.Google Scholar
  154. 154.
    G. S. Papanicolaou, C. Sulem, P. L. Sulem, and X. P. Wang, “The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves,” Physica D, 72, 61–86 (1994).zbMATHMathSciNetCrossRefGoogle Scholar
  155. 155.
    R. L. Sachs, “Completeness of derivative of squared Schrödinger eigenfunction and explicit solutions of the linearized KdV equations,” SIAM J. Math. Anal., 14, No. 4, 674–683 (1983).zbMATHMathSciNetCrossRefGoogle Scholar
  156. 156.
    J. Satsuma and M. J. Ablowitz, “Two-dimensional lumps in nonlinear dispersive systems,” J. Math. Phys., 20, 1496 (1979).zbMATHMathSciNetCrossRefGoogle Scholar
  157. 157.
    J. Villaroell and M. J. Ablowitz, “On the Hamiltonian formalism for the Davey-Stewartson system,” Inv. Prob., 7, 451 (1991).CrossRefGoogle Scholar
  158. 158.
    M. V. Wickenhauser, “Inverse scattering for the heat operator and evolution in 2 + 1 variables,” Commun. Math. Phys., 108, 67–87 (1987).CrossRefGoogle Scholar
  159. 159.
    N. J. Zabuski and M. D. Kruskal, “Interaction of ’solitons’ in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett., 15, 240–243 (1965).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • O. M. Kiselev
    • 1
  1. 1.Institute of Mathematics and Computational Center of Ural Department of Russian Academy of SciencesRussia

Personalised recommendations