Journal of Mathematical Sciences

, Volume 137, Issue 5, pp 5137–5160 | Cite as

On subfactors with unitary orthonormal bases

  • T. Ceccherini-Silberstein


We study subfactors which have a Pimsner-Popa basis consisting of unitaries. Several examples and counterexamples are discussed. A characterization of this property is given in terms of Jones projections. In the finite-index case, a complete characterization is given in terms of Hopf *-algebras.


Orthonormal Basis Conditional Expectation Algebra Structure Cartan Subalgebra Partial Isometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bisch, “A note on intermediate subfactors,” Pacific J. Math., 163, No. 2, 201–216 (1994).zbMATHMathSciNetGoogle Scholar
  2. 2.
    D. Bisch and U. Haagerup, “Composition of subfactors: new examples of infinite depth subfactors, ” Ann. Sci. École Norm. Sup. (4), 29, No. 3, 329–383 (1996).zbMATHMathSciNetGoogle Scholar
  3. 3.
    A. Connes, “Classification of injective factors,” Ann. Math., 104, 73–115 (1976).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Connes, “Classification des facteurs,” Proc. Symp. Pure Math., 38, No. 2, 43–109 (1982).zbMATHMathSciNetGoogle Scholar
  5. 5.
    A. Connes, Noncommutative Geometry, Academic Press, San Diego (1994).zbMATHGoogle Scholar
  6. 6.
    M. Goldman, “On subfactors of type II1,” Mich. Math. J., 6, 167–172 (1959).zbMATHCrossRefGoogle Scholar
  7. 7.
    F. Goodman, P. de la Harpe, and V. F. R. Jones, Coxeter Graphs and Tower of Algebras, Springer-Verlag (1989).Google Scholar
  8. 8.
    F. Hiai, “Minimizing indices of conditional expectations onto a subfactor,” Publ. Res. Inst. Math. Sci., 24, No. 4, 673–678 (1988).zbMATHMathSciNetGoogle Scholar
  9. 9.
    V. F. R. Jones, “Index for subfactors,” Invent. Math., 72, 1–25 (1983).zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    V. F. R. Jones, “Subfactors of II1-factors and related topics,” Proc. ICM Berkeley, 939–947 (1986).Google Scholar
  11. 11.
    Y. Kawahigashi, “Centrally trivial automorphisms and an analogue of Connes’ ϰ(M) for subfactors,” Duke Math. J., 71, 93–118 (1993).zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    P. Loi, “Remarks on automorphisms of subfactors,” Proc. Amer. Math. Soc., 121, No. 2, 523–531 (1994).zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Loi, “On automorphisms of subfactors,” J. Funct. Anal., 141, No. 2, 275–293 (1996).zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    D. McDu., “Central sequences and the hyperfinite factor,” Proc. London Math. Soc., 21, 443–461 (1970).MathSciNetGoogle Scholar
  15. 15.
    F. Murray and J. von Neumann, “On rings of operators, IV,” Ann. Math., 44, 716–808 (1943).zbMATHCrossRefGoogle Scholar
  16. 16.
    A. Ocneanu, “Quantized group string algebras and Galois theory for algebras,” in: Operator Algebras and Applications, Vol 2, London Math. Soc. Lect. Notes Ser., 136 (1989), pp. 119–172.CrossRefGoogle Scholar
  17. 17.
    A. Ocneanu, Neumann Algebras, Springer Lect. Notes Math., 1138, Berlin-Heidelberg-New York (1985).Google Scholar
  18. 18.
    M. Pimsner and S. Popa, “Entropy and index for subfactors,” Ann. Ec. Norm. Sup., 19, 57–106 (1986).zbMATHMathSciNetGoogle Scholar
  19. 19.
    M. Pimsner and S. Popa, “Iterating the basic construction,” Trans. Amer. Math. Soc., 310, 127–133 (1988).zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Popa, “Singular maximal abelian *-subalgebras in continuous von Neumann algebras,” J. Funct. Anal., 50, 151–166 (1983).zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Popa, “Maximal injective subalgebras in factors associated with free groups,” Adv. Math., 50, 27–48 (1983).zbMATHCrossRefGoogle Scholar
  22. 22.
    S. Popa, “Notes on Cartan subalgebras in type-II1 factors,” Math. Scand., 57, No. 1, 171–188 (1985).zbMATHMathSciNetGoogle Scholar
  23. 23.
    S. Popa, “Relative dimension, towers of projections and commuting squares,” Pac. J. Math., 137, 181–207 (1989).zbMATHGoogle Scholar
  24. 24.
    S. Popa, “Classification of subfactors: the reduction to commuting squares,” Invent. Math., 101, No. 1, 19–43 (1990).zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Popa, “On the classification of actions of amenable groups on subfactors,” C. R. Acad. Sci. Paris, 315, 295–299 (1992).zbMATHGoogle Scholar
  26. 26.
    S. Popa, “Approximate innerness and central freeness for subfactors: A classification result,” in: Subfactors, World Scientific, Singapore-New Jersey-London-Hong Kong (1994), pp. 274–293.Google Scholar
  27. 27.
    S. Popa, “Classification of amenable subfactors of type II,” Acta Math., 72, No. 2, 352–445 (1994).Google Scholar
  28. 28.
    S. Popa, “Markov traces on universal Jones algebras and subfactors of finite index,” Invent. Math., 111, No. 2, 375–405 (1993).zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    S. Popa: Classification of Subfactors and Their Endomorphisms, CBMS Regional Conference Series in Mathematics, 86, Amer. Math. Soc., Providence, Rhode Island (1995).zbMATHGoogle Scholar
  30. 30.
    S. Popa, “An axiomatization of the lattice of higher relative commutants of a subfactor,” Invent. Math., 120, No. 3, 427–445 (1995).zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    W. Szymański, “Finite index subfactors and Hopf algebra crossed products,” Proc. Amer. Math. Soc., 120, No. 2, 519–528 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    M. Takesaki, “Duality for crossed products and the structure of von Neumann algebras of type III, ” Acta Math., 131, 249–310 (1973).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • T. Ceccherini-Silberstein
    • 1
  1. 1.Tullio Ceccherini-Silberstein Dipartimento di Matematica “G. Castelnuovo”Università di Roma “La Sapienza”RomaItaly

Personalised recommendations