Journal of Mathematical Sciences

, Volume 131, Issue 5, pp 5939–5947 | Cite as

On Certain Power-Associative, Lie-Admissible Subalgebras of Matrix Algebras

  • K. I. Beidar
  • M. A. Chebotar
  • Y. Fong
  • W.-F. Ke
Article

Abstract

The theory of functional identities is applied to the classification of the third-power-associative products * which can be defined on certain Lie subalgebras A of the matrix algebra Mn(F) over a field F such that x * y − y * x = xy − yx for all x, yA, where xy denotes the usual associative product in Mn(F) and A is the matrix algebra itself, a Lie ideal, a one-sided ideal, the Lie algebra of skew elements, or the algebra of upper triangular matrices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. A. Albert, “Power-associative rings,” Trans. Amer. Math. Soc., 64, 318–328 (1948).Google Scholar
  2. 2.
    K. I. Beidar, M. Bresar, and M. A. Chebotar, “Functional identities on upper triangular matrix algebras, ” J. Math. Sci., 102, 4557–4565 (2000).CrossRefGoogle Scholar
  3. 3.
    K. I. Beidar, S.-C. Chang, M. A. Chebotar, and Y. Fong, “On functional identities in left ideals of prime rings,” Commun. Algebra, 28, 3041–3058 (2000).Google Scholar
  4. 4.
    K. I. Beidar and M. A. Chebotar, “On functional identities and d-free subsets of rings, I,” Commun. Algebra, 28, 3925–3951 (2000).Google Scholar
  5. 5.
    K. I. Beidar and M. A. Chebotar, “On functional identities and d-free subsets of rings, II,” Commun. Algebra, 28, 3953–3972 (2000).Google Scholar
  6. 6.
    K. I. Beidar and M. A. Chebotar, “On Lie-admissible algebras whose commutator Lie algebras are Lie subalgebras of prime associative algebras,” J. Algebra, 233, 675–703 (2000).CrossRefGoogle Scholar
  7. 7.
    G. M. Benkart, “Power-associative Lie-admissible algebras,” J. Algebra, 90, 37–58 (1984).CrossRefGoogle Scholar
  8. 8.
    G. M. Benkart and J. M. Osborn, “Flexible Lie-admissible algebras,” J. Algebra, 71, 11–31 (1981).CrossRefGoogle Scholar
  9. 9.
    G. M. Benkart and J. M. Osborn, “Power-associative products on matrices,” Hadronic J., 5, 1859–1892 (1982).Google Scholar
  10. 10.
    M. Bresar, “Commuting traces of biadditive mappings, commutativity-preserving mappings, and Lie mappings, ” Trans. Amer. Math. Soc., 335, 525–546 (1993).Google Scholar
  11. 11.
    M. Bresar, “Functional identities: A survey. Algebra and its applications,” Contemp. Math., 259, 93–109 (2000).Google Scholar
  12. 12.
    K. Jeong, S.-J. Kang, and H. Lee, “Lie-admissible algebras and Kac-Moody algebras,” J. Algebra. 197, 492–505 (1997).CrossRefGoogle Scholar
  13. 13.
    F. J. Laufer and M. L. Tomber, “Some Lie-admissible algebras,” Can. J. Math., 14, 287–292 (1962).Google Scholar
  14. 14.
    H. C. Myung, “Some classes of flexible Lie-admissible algebras,” Trans. Amer. Math. Soc., 167, 79–88 (1972).Google Scholar
  15. 15.
    H. C. Myung, “Malcev-admissible algebras,” Progr. Math., 64, Birkhauser (1986).Google Scholar
  16. 16.
    H. C. Myung, “Lie-admissible algebras and the Virasoro algebra,” J. Korean Math. Soc., 33, 1123–1128 (1996).Google Scholar
  17. 17.
    S. Okubo, Introduction to Octonion and Other Non-Associative Algebras in Physics, Cambridge Univ. Press, New York (1995).Google Scholar
  18. 18.
    S. Okubo and H. C. Myung, “Adjoint operators in Lie algebras and the classiffication of simple flexible Lie-admissible algebras,” Trans. Amer. Math. Soc., 264, 459–472 (1981).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • K. I. Beidar
    • 1
  • M. A. Chebotar
    • 2
  • Y. Fong
    • 1
  • W.-F. Ke
    • 1
  1. 1.National Cheng-Kung UniversityTainanTaiwan
  2. 2.Tula State UniversityTulaRussia

Personalised recommendations