Journal of Mathematical Sciences

, Volume 129, Issue 4, pp 4053–4082 | Cite as

Asymptotics of Spectral Data of a Harmonic Oscillator Perturbed by a Potential

  • D. S. Chelkak
Article
  • 22 Downloads

Abstract

Asymptotics of spectral data of a perturbed harmonic oscillator −y″ + x2y + q(x)y are obtained for potentials q(x) such that q′, xq ∈ L2(ℝ). These results are important in the solution of the corresponding inverse spectral problem. Bibliography: 7 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. P. McKean and E. Trubowitz, “The spectral class of the quantum-mechanical harmonic oscillator,” Comm. Math. Phys., 82, 471–495 (1981/82).CrossRefGoogle Scholar
  2. 2.
    J. Poschel and E. Trubowitz, Inverse Spectral Theory, Academic Press, Boston (1987).Google Scholar
  3. 3.
    H. Bateman and A. Erdelyi, Higher Trancsendental Functions. Bessel Functions, Functions of Parabolic Cylinder, Orthogonal Polynomials [Russian translation], Moscow (1974).Google Scholar
  4. 4.
    D. Chelkak, P. Kargaev, and E. Korotyaev, “Inverse problem for harmonic oscillator perturbed by a potential. Characterization,” Preprint SFB 288, No. 573, Berlin (2002).Google Scholar
  5. 5.
    D. Chelkak, P. Kargaev, and E. Korotyaev, “An inverse problem for a harmonic oscillator perturbed by a potential. Uniqueness,” Lett. Math. Phys., 64, 7–21 (2003).CrossRefGoogle Scholar
  6. 6.
    F. Olver, “Two inequalities for parabolic cylinder functions,” Proc. Cambridge Philos. Soc., 57, 811–822 (1961).Google Scholar
  7. 7.
    M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations [in Russian], Moscow (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • D. S. Chelkak
    • 1
  1. 1.St. Petersburg State UniversityRussia

Personalised recommendations