Journal of Mathematical Sciences

, Volume 100, Issue 4, pp 2355–2427

Controllability of invariant systems on lie groups and homogeneous spaces

  • Yu. L. Sachkov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ph. Adda, “Contrôllabilité des systèmes bilinéaires generaux et homogenes dans ℝ2,” Lect. Notes Contr. Inf. Sci., 111, 205–214 (1988).MathSciNetGoogle Scholar
  2. 2.
    Ph. Adda and G. Sallet, “Determination algorothmique de la contrôllabilité pour des families finies de champs de vecteurs lineaires sur ℝ2\{0}, R.A.I.R.O. APII, 24, 377–390 (1990).MATHMathSciNetGoogle Scholar
  3. 3.
    A. A. Agrachev, “Local controllability and semigroups of diffeomorphisms,” Acta Appl. Math., 32, 1–57 (1993).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. A. Agrachev, S. V. Vakhrameev, and R. V. Gamkrelidze, “Differential-geometric and group-theoretic methods in optimal control theory,” in: Progress in Science and Technology, Series on Problems in Geometry [in Russian], Vol. 14, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1983), pp. 3–56.Google Scholar
  5. 5.
    H. Albuquerque and F. Silva Leite, “On the generators of semisimple Lie algebras,” Linear Algebra Appl., 119, 51–56 (1989).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Yu. N. Andreev, “Differential-geometric methods in control theory,” Automat. Telemekh., No. 10, 5–46 (1982).Google Scholar
  7. 7.
    R. El Assoudi, “Accessibilité par des champs de vecteurs invariants à droite sur un groupe de Lie,” Thèse de doctorat de l’Université Joseph Fourier, Grenoble (1991).Google Scholar
  8. 8.
    R. El Assoudi and J. P. Gauthier, “Controllability of right-invariant systems on real simple Lie groups of type F 4, G 2, C n, and B nMath. Control Signals Systems, 1, 293–301 (1988).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    R. El Assoudi and J. P. Gauthier, “Controllability of right-invariant systems on semi-simple Lie groups,” in: New Trends in Nonlinear Control Theory, Springer-Verlag 122 (1989), pp. 54–64.Google Scholar
  10. 10.
    R. El Assoudi, J. P. Gauthier, and I. Kupka, “On subsemigroups of semisimple Lie groups,” Ann. Inst. Henri Poincaré, 13, No. 1, 117–133 (1996).MATHGoogle Scholar
  11. 11.
    L. Auslander, L. Green, and F. Hahn, “Flows on homogeneous spaces,” Ann. Math. Studies, No. 53, Princeton Univ. Press, Princeton, New Jersey (1963).MATHGoogle Scholar
  12. 12.
    V. Ayala Bravo, “Controllability of nilpotent systems,” in: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publications, Warszawa, 32 (1995), pp. 35–46.Google Scholar
  13. 13.
    V. Ayala Bravo and L. Vergara, “Co-adjoint representation and controllability,” Proyecciones, 11, 37–48 (1992).MathSciNetGoogle Scholar
  14. 14.
    V. Ayala Bravo and I. Jiron, “Observabilidad del producto directo de sistemas bilineales,” Revista Cubo, 9, 35–46 (1993).Google Scholar
  15. 15.
    V. Ayala Bravo and J. Tirao, “Controllability of linear vector fields on Lie groups,” Int. Centre Theor. Physics, Preprint IC/95/310, Trieste, Italy (1994).Google Scholar
  16. 16.
    V. Ayala Bravo and A. Hacibekiroglu, “Observability of linear systems on Lie groups,” Int. Centre Theor. Physics, Preprint IC/95/2, Trieste, Italy (1995).Google Scholar
  17. 17.
    V. Ayala Bravo, O. Rojo, and R. Soto, “Observability of the direct product of bilinear systems on Lie groups,” Comput. Math. Appl., 36, No. 3, 107–112 (1998).CrossRefMathSciNetGoogle Scholar
  18. 18.
    J. Basto Gonçalves, “Sufficient conditions for local controllability with unbounded controls,” SIAM J. Control Optim., 16, 1371–1378 (1987).CrossRefGoogle Scholar
  19. 19.
    J. Basto Gonçalves, “Controllability in codimension one,” J. Diff. Equat., 68, 1–9 (1987).MATHCrossRefGoogle Scholar
  20. 20.
    J. Basto Gonçalves, “Local controllability in 3-manifolds,” Syst. Contr. Lett., 14, 45–49 (1990).MATHCrossRefGoogle Scholar
  21. 21.
    J. Basto Gonçalves, “Local controllability of scalar input systems on 3-manifolds,” Syst. Contr. Lett., 16, 349–355 (1991).MATHCrossRefGoogle Scholar
  22. 22.
    A. Bacciotti, “On the positive orthant controllability of two-dimensional bilinear systems,” Syst. Contr. Lett., 3, 53–55 (1983).MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    A. Bacciotti and G. Stefani, “On the relationship between global and local controllability,” Math. Syst. Theory, 16, 79–91 (1983).MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    R. M. Bianchini and G. Stefani, “Sufficient conditions of local controllability,” in: Proc. 25th IEEE Conf. Decis. Control, Athens (1986).Google Scholar
  25. 25.
    B. Bonnard, “Contrôllabilité des systèmes bilinéaires,” Math. Syst. Theory, 15, 79–92 (1981).MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    B. Bonnard, “Contrôllabilité des systèmes bilinéaires,” in: Qutils Modeles Math. Autom. Anal. Syst. Trait Signal., Vol. 1, Paris (1981), pp. 229–243.Google Scholar
  27. 27.
    B. Bonnard, “Controllabilité de systèmes mecaniques sur les groupes de Lie,” SIAM J. Control Optim., 22, 711–722 (1984).MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    B. Bonnard, V. Jurdjevic, I. Kupka, and G. Sallet, “Transitivity of families of invariant vector fields on the semidirect products of Lie groups,” Trans. Amer. Math. Soc., 271, No. 2, 525–535 (1982).MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    W. Boothby, “A transitivity problem from control theory,” J. Diff. Equat., 17, 296–307 (1975).MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    W. M. Boothby, “Some comments on positive orthant controllability of bilinear systems,” SIAM J. Control Optim., 20, 634–644 (1982).MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    W. Boothby and E. N. Wilson, “Determination of the transitivity of bilinear systems,” SIAM J. Control, 17, 212–221 (1979).MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    A. Borel, “Some remarks about transformation groups transitive on spheres and tori,” Bull. Amer. Math. Soc., 55, 580–586 (1949).MATHMathSciNetGoogle Scholar
  33. 33.
    A. Borel, “Le plan projectif des octaves et les sphères comme espaces homogènes,” C. R. Acad. Sci. Paris, 230, 1378–1380 (1950).MATHMathSciNetGoogle Scholar
  34. 34.
    N. Bourbaki, Éléments de Mathématique, Groupes et Algèbres de Lie, Chapitre 2: Algèbres de Lie, Hermann, Paris (1960).Google Scholar
  35. 35.
    N. Bourbaki, Éléments de Mathématique, Groupes et Algèbres de Lie, Chapitre 2: Algèbres de Lie Libres. Chapitre 3: Groupes de Lie, Hermann, Paris (1972).Google Scholar
  36. 36.
    R. W. Brockett, “System theory on group manifolds and coset spaces,” SIAM J. Control, 10, 265–284 (1972).MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    R. W. Brockett, “Lie algebras and Lie groups in control theory,” in: Geometric Methods in System Theory, D. Q. Mayne and R. W. Brockett, eds., Proceedings of the NATO Advanced study institute held at London, August 27–September 7, 1983, Dordrecht-Boston, D. Reidel Publishing Company (1973), pp. 43–82.Google Scholar
  38. 38.
    R. W. Brockett, “On the reachable set for bilinear systems,” Lect. Notes Econ. Math. Syst., 111, 54–63 (1975).MathSciNetGoogle Scholar
  39. 39.
    C. Bruni, G. Di Pillo, and G. Koch, “Bilinear systems: an appealing class of ‘nearly linear’ systems in theory and applications,” IEEE Trans. Autom. Control, 19, 334–348 (1974).MATHCrossRefGoogle Scholar
  40. 40.
    J. L. Casti, “Recent developments and future perspectives in nonlinear system theory,” SIAM Review, 24, No. 2, 301–331 (1982).MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    D. Cheng, W. P. Dayawansa, and C. F. Martin, “Observability of systems on Lie groups and coset spaces,” SIAM J. Control Optim., 28, 570–581 (1990).MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    I. Chong and J. D. Lawson, “Problems on semigroup and control,” Semigroup Forum, 41, 245–252 (1990).CrossRefMathSciNetGoogle Scholar
  43. 43.
    P. Crouch and F. Silva Leite, “On the uniform finite generation of SO(n; ℝ),” Syst. Contr. Letters, 2, 341–347 (1983).MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    P. Crouch and C. I. Byrnes, “Symmetries and local controllability,” in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel, eds., Reidel Publishing Company, Holland (1986).Google Scholar
  45. 45.
    D. Elliott and T. Tarn, “Controllability and observability for bilinear systems,” in: SIAM National Meeting, Seattle, Washington (1971).Google Scholar
  46. 46.
    M. J. Enos, “Controllability of a system of two symmetric rigid bodies in three space,” SIAM J. Control Optim., 32, 1170–1185 (1994).MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    J. P. Gauthier, Structures des Systemes Nonlineares, GNRS, Paris (1984).Google Scholar
  48. 48.
    J. P. Gauthier and G. Bornard, “Contrôlabilité des systèmes bilinèaires,” SIAM J. Control Optim., 20, No. 3, 377–384 (1982).MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    J. P. Gauthier, I. Kupka and G. Sallet, “Controllability of right invariant systems on real simple Lie groups,” Syst. Contr. Lett., 5, 187–190 (1984).MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    R. Hermann, “On the accessibility problem in control theory,” in: International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York (1963), pp. 325–332.Google Scholar
  51. 51.
    H. Hermes, “On local and global controllability,” SIAM J. Control, 12, 252–261 (1974).MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    H. Hermes, “Controlled stability,” Ann. Mat. Pura Appl., CXIV, 103–119 (1977).MathSciNetGoogle Scholar
  53. 53.
    H. Hermes, “On local controllability,” SIAM J. Control Optim., 20, 211–220 (1982).MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    H. Hermes and M. Kawski, “Local controllability of a single-input, affine system,” in: Proc. 7th Int. Conf. Nonlinear Analysis, Dallas (1986).Google Scholar
  55. 55.
    J. Hilgert, “Maximal semigroups and controllability in products of Lie groups,” Arch. Math., 49, 189–195 (1987).MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    J. Hilgert, “Controllability on real reductive Lie groups,” Math Z., 209, 463–466 (1992).MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    J. Hilgert, K. H. Hofmann and J. D. Lawson, “Controllability of systems on a nilpotent Lie group,” Beiträge Algebra Geometrie, 20, 185–190 (1985).MATHMathSciNetGoogle Scholar
  58. 58.
    J. Hilgert, K. H. Hofmann and J. D. Lawson, Lie Groups, Convex Cones, and Semigroups, Oxford University Press (1989).Google Scholar
  59. 59.
    J. Hilgert and K. H. Neeb, “Lie semigroups and their applications,” Lect. Notes Math., 1552 (1993).Google Scholar
  60. 60.
    M. W. Hirsch, “Convergence in neural nets,” in: Proc. Int. Conf. Neural Networks, Vol. II (1987), pp. 115–125.Google Scholar
  61. 61.
    R. M. Hirschorn, “Invertibility of control systems on Lie groups,” SIAM J. Contr. Optim., 15, 1034–1049 (1977).MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    K. H. Hofmann, “Lie algebras with subalgebras of codimension one,” Ill. J. Math., 9, 636–643 (1965).MATHGoogle Scholar
  63. 63.
    K. H. Hofmann, “Hyperplane subalgebras of real Lie algebras,” Geom. Dedic., 36, 207–224 (1990).MATHGoogle Scholar
  64. 64.
    K. H. Hofmann, “Compact elements in solvable real Lie algebras,” Seminar Sophus Lie (Lie theory), 2, 41–55 (1992).MATHGoogle Scholar
  65. 65.
    K. H. Hofmann, “Memo to Yurii Sachkov on Hyperplane Subalgebras of Lie Algebras,” E-mail message, March (1996).Google Scholar
  66. 66.
    K. H. Hofmann and J. D. Lawson, “Foundations of Lie semigroups,” Lect. Notes Math., 998, 128–201 (1983).MathSciNetGoogle Scholar
  67. 67.
    K. R. Hunt, “Controllability of nonlinear hypersurface systems,” in: C. I. Byrnes and C. F. Martin, eds., Algebraic and Geometric Methods in Linear Systems Theory, AMS, Providence, Rhode Island (1980).Google Scholar
  68. 68.
    K. R. Hunt, “n-Dimensional controllability with (n−1) controls,” IEEE Trans. Autom. Control, 27, 113–117 (1982).MATHCrossRefGoogle Scholar
  69. 69.
    N. Imbert, M. Clique, and A.-J. Fossard, “Un critère de gouvernabilite des systèmes bilinéaires,” R.A.I.R.O., 3, 55–64 (1975).MathSciNetGoogle Scholar
  70. 70.
    A. Isidori, Nonlinear Control Systems. An Introduction, Springer, Berlin (1989).Google Scholar
  71. 71.
    N. Jacobson, Lie Algebras, Interscience Publishers, New York-London (1962).MATHGoogle Scholar
  72. 72.
    I. Joo, N. M. Tuan, “On controllability of some bilinear systems,” C. R. Acad. Sci., Ser. I, 315, 1393–1398 (1992).MATHMathSciNetGoogle Scholar
  73. 73.
    A. Joseph, “The minimal orbit in a simple Lie algebra and its associated maximal ideal,” Ann. Sci. l'École Norm. Sup., 9, No. 1, 1–29 (1976).MATHGoogle Scholar
  74. 74.
    V. Jurdjevic, On the reachability properties of curves in ℝn with prescribed curvatures, University of Bordeaux Publ. 1, No. 8009 (1980).Google Scholar
  75. 75.
    V. Jurdjevic, “Optimal control problems on Lie groups,” in: Analysis of Controlled Dynamical Systems, Proc. Confer., Lyon, France, July 1990, B. Bonnard, B. Bride, J. P. Gauthier, and I. Kupka, eds., pp. 274–284.Google Scholar
  76. 76.
    V. Jurdjevic, “The geometry of the plate-ball problem,” Arch. Rat. Mech. Anal., 124, 305–328 (1993).MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    V. Jurdjevic, “Optimal control problems on Lie groups: Crossroads between geometry and mechanics,” in: Geometry of Feedback and Optimal Control, B. Jukubczyk and W. Respondek, eds., Marcel Dekker, New York (1993).Google Scholar
  78. 78.
    V. Jurdjevic, “Non-Euclidean elastica,” Amer. J. Math., 117, 93–124 (1995).MATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    V. Jurdjevic, Geometric Control Theory, Cambridge University Press (1997).Google Scholar
  80. 80.
    V. Jurdjevic and I. Kupka, “Control systems subordinated to a group action: Accessibility,” J. Differ. Equat., 39, 186–211 (1981).MATHCrossRefMathSciNetGoogle Scholar
  81. 81.
    V. Jurdjevic and I. Kupka, “Control systems on semi-simple Lie groups and their homogeneous spaces,” Ann. Inst. Fourier, Grenoble, 31, No. 4, 151–179 (1981).MATHMathSciNetGoogle Scholar
  82. 82.
    V. Jurdjevic and G. Sallet, “Controllability properties of affine systems,” SIAM J. Control, 22, 501–508 (1984).MATHCrossRefMathSciNetGoogle Scholar
  83. 83.
    V. Jurdjevic and H. Sussmann, “Control systems on Lie groups,” J. Diff. Equat., 12, 313–329 (1972).MATHCrossRefMathSciNetGoogle Scholar
  84. 84.
    M. Kawski, Nilpotent Lie Algebras of Vector Fields and Local Controllability of Nonlinear Systems, Ph.D. Dissertation, Univ. of Colorado, Boulder (1986).Google Scholar
  85. 85.
    D. E. Koditschek and K. S. Narendra, “The controllability of planar bilinear systems,” IEEE Trans. Autom. Control. 30, 87–89 (1985).CrossRefMathSciNetGoogle Scholar
  86. 86.
    A. Krener, “A generalization of Chow’s theorem and the Bang-Bang theorem to non-linear control problems,” SIAM J. Control, 12, 43–51 (1974).MATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    P. S. Krishnaprasad and D. P. Tsakiris, “G-suakes: Nonholonomic kinematic chains on Lie groups,” Proc. 33rd IEEE Conf. Decis. Control, Lake Buena Vista, FL (1994), pp. 2955–2960.Google Scholar
  88. 88.
    P. S. Krishnaprasad and D. P. Tsakiris, “Oscillations, SE(2)-snakes and motion control,” Proc. 34th IEEE Conf. Decis. and Control, New Orleans, Louisiana (1995).Google Scholar
  89. 89.
    J. Kučera, “Solution in the large of the control system =(Au+Bu)x,” Czech. Math. J., 16, 600–623 (1966).Google Scholar
  90. 90.
    J. Kučera, “Solution in the large of the control system =(Au+Bu)x,” Czech. Math. J., 17, 91–96 (1967).Google Scholar
  91. 91.
    J. Kučera, “On the accessibility of bilinear systems,” Czech. Math. J., 20, 160–168 (1970).Google Scholar
  92. 92.
    I. Kupka, “Applications of semigroups to geometric control theory,” in: The Analytical and Topological Theory of Semigroups—Trends and Developments, K. H. Hofmann, J. D. Lawson, and J. S. Pym, eds., de Gruyter Expositions in Mathematics, 1 (1990), pp. 337–345.Google Scholar
  93. 93.
    M. Kuranishi, “On everywhere dense imbedding of free groups in Lie groups,” Nagoya Math. J., 2 63–71 (1951).MATHMathSciNetGoogle Scholar
  94. 94.
    J. D. Lawson, “Maximal subsemigroups of Lie groups that are total,” Proc. Edinburgh Math. Soc., 30, 479–501 (1985).MathSciNetCrossRefGoogle Scholar
  95. 95.
    N. Levitt and H. J. Sussmann, “On controllability by means of two vector fields,” SIAM J. Control, 13, 1271–1281 (1975).MATHCrossRefMathSciNetGoogle Scholar
  96. 96.
    N. L. Lepe, “Geometric method of investigation of controllability of two-dimensional bilinear systems,” Avtomat. Telemekh., No. 11, 19–25 (1984).MathSciNetGoogle Scholar
  97. 97.
    C. Lobry, “Contrôllabilité des systèmes non linéaires,” SIAM J. Control, 8, 573–605 (1970).MATHCrossRefMathSciNetGoogle Scholar
  98. 98.
    C. Lobry, “Controllability of non linear systems on compact manifolds,” SIAM J. Control, 12, 1–4 (1974).MATHCrossRefMathSciNetGoogle Scholar
  99. 99.
    C. Lobry, “Critères de gouvernabilite des asservissements non linéaires,” R.A.I.R.O., 10, 41–54 (1976).MathSciNetGoogle Scholar
  100. 100.
    L. Markus, “Controllability of multi-trajectories on Lie groups,” Lect. Notes Math., 898, 250–256 (1981).MathSciNetGoogle Scholar
  101. 101.
    D. Mittenhuber, “Kontrolltheorie auf Lie-Gruppen,” Seminar Sophus Lie, 1, 185–191 (1991).MATHMathSciNetGoogle Scholar
  102. 102.
    D. Mittenhuber, “Semigroups in the simply connected covering of SL(2)”, Semigroup Forum, 46, 379–387 (1993).MATHCrossRefMathSciNetGoogle Scholar
  103. 103.
    D. Mittenhuber, “Control theory on Lie groups, Lie semigroups and the globality of Lie wedges,” Ph.D. Dissertation, TH Darmstadt (1994).Google Scholar
  104. 104.
    F. Monroy-Pérez, “Non-Euclidean Dubins' problem,” J. Dyn. Cont. Syst., 4, 249–272 (1998).MATHCrossRefGoogle Scholar
  105. 105.
    D. Montgomery and H. Samelson, “Transformation groups of spheres,” Ann. Math., 44, 454–470 (1943).CrossRefMathSciNetGoogle Scholar
  106. 106.
    N. E. Leonard, “Averaging and motion control of systems on Lie groups,” Ph.D. dissertation, Univ. Maryland, College Park, MD (1994).Google Scholar
  107. 107.
    N. E. Leonard and P. S. Krishnaprasad, “Control of switched electrical networks using averaging on Lie groups,” Proc. 33rd IEEE Conf. Decis. Control, Lake Buena Vista, FL (1994), pp. 1919–1924.Google Scholar
  108. 108.
    N. E. Leonard and P. S. Krishnaprasad, “Motion control of drift-free, left-invariant systems on Lie groups,” IEEE Trans. Autom. Control, 40, 1539–1554 (1995).MATHCrossRefMathSciNetGoogle Scholar
  109. 109.
    M. Lovric, “Left-invariant control systems on Lie groups,” Preprint F193-CT03, January 1993, The Fields Institute for Research in Mathematical Sciences, Canada.Google Scholar
  110. 110.
    K.-H. Neeb, “Semigroups in the universal covering of SL(2),” Semigroup Forum, 40, 33–43 (1990).Google Scholar
  111. 111.
    U. Piechottka, “Comments on ‘The controllability of planar bilinear systems,” IEEE Trans. Autom. Control, 35, 767–768 (1990).MATHCrossRefGoogle Scholar
  112. 112.
    U. Piechottka and P. M. Frank, “Controllability of bilinear systems: A survey and some new results,” in: Nonlinear Control Systems Design, A Isidori, ed., Pergamon Press (1990), pp. 12–28.Google Scholar
  113. 113.
    R. E. Rink and R. R. Möhler, “Completely controllable bilinear systems,” SIAM, J. Control, 6, 477–486 (1986).CrossRefGoogle Scholar
  114. 114.
    Yu. L. Sachkov, “Controllability of three-dimensional bilinear systems,” Vestn. MGU, Mat., Mekh., No. 4, 26–30 (1991).MathSciNetGoogle Scholar
  115. 115.
    Yu. L. Sachkov, “Invariant domains of three-dimensional bilinear systems,” Vestn. MGU, Mat., Mekh., No. 2, 361–363 (1993).MathSciNetGoogle Scholar
  116. 116.
    Yu. L. Sachkov, “Positive orthant controllability of 2-dimensional and 3-dimensional bilinear systems,” Diff. Uravn., No. 2, 361–363 (1993).MathSciNetGoogle Scholar
  117. 117.
    Y. L. Sachkov, “Positive orthant controllability of single-input bilinear systems,” Mat. Zametki, 85, 419–424 (1995).MathSciNetGoogle Scholar
  118. 118.
    Yu. L. Sachkov, “Controllability of hypersurface and solvable invariant systems,” J. Dyn. Control Syst., 2, No. 1, 55–67 (1996).MATHCrossRefMathSciNetGoogle Scholar
  119. 119.
    Yu. L. Sachkov, “On positive orthant controllability of bilinear systems in small codimensions,” SIAM J. Control Opt., 35, 29–35 (1997).MATHCrossRefMathSciNetGoogle Scholar
  120. 120.
    Yu. L. Sachkov, “Controllability of right-invariant systems on solvable Lie groups,” J. Dyn. Control Syst., 3, No. 4, 531–564 (1997).MATHMathSciNetGoogle Scholar
  121. 121.
    Yu. L. Sachkov, “On invariant orthants of bilinear systems,” J. Dyn. Control Syst., 4, No. 1, 137–147 (1998).MATHCrossRefMathSciNetGoogle Scholar
  122. 122.
    Yu. L. Sachkov, “Survey on controllability of invariant systems on solvable Lie Groups,” in: Proc. AMS Summer Research Institute on Differential Geometry and Control, Boulder, Colorado, July 1997, to appear.Google Scholar
  123. 123.
    Yu. L. Sachkov, “Classification of controllability in small-dimensional solvable Lie algebras” (in preparation).Google Scholar
  124. 124.
    G. Sallet, “Une condition suffisante de complète contrôlabilité dans le groupe des déplacements de ℝnC. R. Acad. Sc. Paris, Série A, 282, 41–44 (1976).MATHMathSciNetGoogle Scholar
  125. 125.
    G. Sallet, “Complete controllabilite sur les groupes lineaires,” in: Qutils Modeles Math. Autom. Anal. Syst. Trait Signal, Vol. 1, Paris (1981), pp. 215–227.Google Scholar
  126. 126.
    G. Sallet, “Extension techniques,” in: Systems and Control Encyclopedia II (1987), pp. 1581–1583.Google Scholar
  127. 127.
    G. Sallet, “Lie groups: Controllability,” in: Systems and Control Encyclopedia (1987), pp. 2756–2759.Google Scholar
  128. 128.
    H. Samelson, “Topology of Lie groups,” Bull. Amer. Math. Soc., 58, 2–37 (1952).MATHCrossRefMathSciNetGoogle Scholar
  129. 129.
    L. A. B. San Martin, “Invariant control sets on flag manifolds,” Math. Control Signals Systems, 6, 41–61 (1993).MATHCrossRefMathSciNetGoogle Scholar
  130. 130.
    L. A. B. San Martin and P. A. Tonelli, “Semigroup actions on homogeneous spaces,” Semigroup Forum, 14, 1–30 (1994).Google Scholar
  131. 131.
    A. Sarti, G. Walsh, and S. Sastry, “Steering left-invariant control systems on matrix Lie groups,” in: Proc. 32nd IEEE Conf. Decis. Control, San Antonio, Texas (1993), pp. 3117–3121.Google Scholar
  132. 132.
    F. Silva Leite, “Uniform controllable sets of left-invariant vector fields on compact Lie groups,” Syst. Contr. Lett., 6, 329–335 (1986).MATHCrossRefMathSciNetGoogle Scholar
  133. 133.
    F. Silva Leite, “Uniform controllable sets of left-invariant vector fields on noncompact Lie groups,” Syst. Contr. Lett., 7, 213–216 (1986).MATHCrossRefMathSciNetGoogle Scholar
  134. 134.
    F. Silva Leite, “Pairs of generators for compact real forms of the classical Lie algebras,” Linear Algebra Appl., 121, 123–133 (1989).MATHCrossRefMathSciNetGoogle Scholar
  135. 135.
    F. Silva Leite, “Bounds on the order of generation of SO(n;ℝ) by one-parameter subgroups,” Rocky Mount. J. Math., 21, 879–911 (1991).MATHMathSciNetGoogle Scholar
  136. 136.
    F. Silva Leite and P. Crouch, “Controllability on classical Lie groups,” Math. Control Signals Systems, 1, 31–42 (1988).MATHCrossRefMathSciNetGoogle Scholar
  137. 137.
    G. Stefani, “On the local controllability of a scalar-input system,” in: Theory and Applications of Nonlinear Control Systems, C. I. Byrnes and A. Lindquist, eds., Elsevier (1986).Google Scholar
  138. 138.
    H. J. Sussmann, “The ‘Bang-Bang’ problem for certain control systems on GL(n;ℝ),” SIAM J. Control, 10, 470–476 (1972).MATHCrossRefMathSciNetGoogle Scholar
  139. 139.
    H. J. Sussmann and V. Jurdjevic, “Controllability of non-linear systems,” J. Diff. Equat., 12, 95–116 (1972).MATHCrossRefMathSciNetGoogle Scholar
  140. 140.
    H. J. Sussmann, “Orbits of families of vector fields and integrability of distributions,” Trans. Amer. Math. Soc., 180, 171–188 (1973).MATHCrossRefMathSciNetGoogle Scholar
  141. 141.
    H. J. Sussmann, “Lie brackets, real analyticity and geometric control,” in: Differential Geometric Control Theory, R. W. Brockett, R. S. Millmann, and H. J. Sussmann, eds., Birkhäuser, Boston-Basel-Stuttgart (1983), pp. 1–116.Google Scholar
  142. 142.
    H. J. Sussmann, “A general theorem on local controllability,” SIAM J. Control Optim., 25, 158–194 (1987).MATHCrossRefMathSciNetGoogle Scholar
  143. 143.
    A. I. Tretyak, “Sufficient conditions for local controllability and high-order necessary conditions for optimality. A differential-geometric approach,” in: Progress in Science and Technology, Series on Mathematics and Its Applications. Thematical Surveys, Vol. 24, Dynamical Systems-4 [in Russian], All-Russian Institute for Scientific and Technical Information (VINITI), Ross. Akad. Nauk (1996).Google Scholar
  144. 144.
    S. A. Vakhrameev, “Geometrical and topological methods in optimal control theory,” J. Math. Sci., 76, No. 5, 2555–2719 (1995).MATHCrossRefMathSciNetGoogle Scholar
  145. 145.
    S. A. Vakhrameev and A. V. Sarychev, “Geometrical control theory,” in: Progress in Science and Technology, series on Algebra, Topology, and Geometry. Thematical Surveys, Vol. 23 [in Russian], All-Russian Institute for Scientific and Technical Information (VINITI), Ross. Akad. Nauk (1985), pp. 197–280.Google Scholar
  146. 146.
    V. S. Varadarjan, Lie Groups, Lie Algebras, and Their Representations, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo (1984).Google Scholar
  147. 147.
    E. B. Vinberg and A. L. Onishchik, Seminar on Lie Groups and Algebraic Groups [in Russian], Moscow (1988).Google Scholar
  148. 148.
    E. B. Vinberg, V. V. Gorbatcevich, and A. L. Onishchik, “Construction of Lie groups and Lie algebras,” in: Progress in Science and Technology, Series on Complementary Problems in Mathematics, Basic Directions, Vol. 41, All-Russian Institute for Scientific and Technical Information (VINITI), Ross. Akad. Nauk (1989).Google Scholar
  149. 149.
    G. Walsh, R. Montgomery, and S. Sastry, “Optimal path planning on matrix Lie groups”, Proc. 33rd IEEE Conf. Decis. and Control, Lake Buena Vista, FL (1994), pp. 1312–1318.Google Scholar
  150. 150.
    G.N. Yakovenko, “Optimal control synthesis on a third-order Lie group”, Kybern. Vychisl. Tekh. (Kiev), 51, 17–22 (1981).MathSciNetGoogle Scholar
  151. 151.
    G.N. Yakovenko, “Control on Lie groups: First integrals, singular controls”, Kybern. Vychisl. Tekh. (Kiev), 62, 10–20 (1984).MATHMathSciNetGoogle Scholar
  152. 152.
    V.A. Yatcenko, “Euler equation on Lie groups and optimal control of bilinear systems”, Kybern. Vychisl. Tekh. (Kiev), 58, 78–80 (1983).Google Scholar
  153. 153.
    M.I. Zelikin, “Optimal trajectories synthesis on representation spaces of Lie groups”, Mat. Sb., 132, 541–555 (1987).Google Scholar
  154. 154.
    M.I. Zelikin, “Group symmetry in degenerate extremal problems”, Usp. Mat. Nauk, 43, No. 2, 139–140 (1988).MATHMathSciNetGoogle Scholar
  155. 155.
    M.I. Zelikin, “Optimal control of a rigid body rotation”, Dokl. Ross. Akad. Nauk, 346, 334–336 (1996).Google Scholar
  156. 156.
    M.I. Zelikin, “Totally extremal manifolds for optimal control problems”, in: Semigroups in Algebra, Geometry and Analysis, Hofmann, Lawson, and Vinberg, eds., Walter de Gruyter & Co., Berlin-New York (1995), pp. 339–354.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • Yu. L. Sachkov

There are no affiliations available

Personalised recommendations