Advertisement

On Set Containment Characterizations for Sets Described by Set-Valued Maps with Applications

  • Nithirat Sisarat
  • Rabian WangkeereeEmail author
  • Gue Myung Lee
Article
  • 6 Downloads

Abstract

In this paper, dual characterizations of the containment of two sets involving convex set-valued maps are investigated. These results are expressed in terms of the epigraph of a conjugate function of infima associated with corresponding set-valued maps. As an application, we establish characterizations of weak and proper efficient solutions of set-valued optimization problems in the sense of vector criteria.

Keywords

Set containment Convexity of set-valued maps Set-valued optimization Optimality conditions 

Mathematics Subject Classification

54C60 52A41 49J52 90C46 

Notes

Acknowledgements

The authors are extremely thankful to the anonymous referees and the editor for providing several suggestions to improve the paper to its current form greatly. This research was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0026/2555), the Thailand Research Fund, Grant No. RSA6080077, and Naresuan University. The third author was supported by the National Research Foundation of Korea (NRF) Grant funded by Korea government (MSIT) (NRF-2017R1E1A1A03069931).

References

  1. 1.
    Mangasarian, O.L.: Generalized Support Vector Machines, in Advances in Large Margin Classifiers, vol. 135–146. MIT Press, Cambridge (2000)Google Scholar
  2. 2.
    Mangasarian, O.L.: Set containment characterization. J. Glob. Optim. 24(4), 473–480 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Jeyakumar, V.: Characterizing set containments involving infinite convex constraints and reverse-convex constraints. SIAM J. Optim. 13(4), 947–959 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Goberna, M.A., Jeyakumar, V., Dinh, N.: Dual characterizations of set containments with strict convex inequalities. J. Glob. Optim. 34(1), 33–54 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Doagooei, A.R., Mohebi, H.: Dual characterizations of the set containments with strict cone-convex inequalities in Banach spaces. J. Glob. Optim. 43(4), 577–591 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Suzuki, S., Kuroiwa, D.: Set containment characterization for quasiconvex programming. J. Glob. Optim. 45(4), 551–563 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Suzuki, S.: Set containment characterization with strict and weak quasiconvex inequalities. J. Glob. Optim. 47(2), 273–285 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Suzuki, S., Kuroiwa, D.: On set containment characterization and constraint qualification for quasiconvex programming. J. Optim. Theory Appl. 149(3), 554–563 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jeyakumar, V., Lee, G.M., Lee, J.H.: Sums of squares characterizations of containment of convex semialgebraic sets. Pac. J. Optim. 12(1), 29–42 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kellner, K., Theobald, T., Trabandt, C.: Containment problems for polytopes and spectrahedra. SIAM J. Optim. 23(2), 1000–1020 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jeyakumar, V., Ormerod, J., Womersley, R.S.: Knowledge-based semidefinite linear programming classifiers. Optim. Methods Softw. 21(5), 471–481 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jeyakumar, V., Li, G., Suthaharan, S.: Support vector machine classifiers with uncertain knowledge sets via robust optimization. Optimization 63(7), 1099–1116 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jeyakumar, V., Glover, B.M.: Characterizing global optimality for DC optimization problems under convex inequality constraints. J. Glob. Optim. 8(2), 171–187 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jeyakumar, V., Li, G.: Characterizing robust set containments and solutions of uncertain linear programs without qualifications. Oper. Res. Lett. 38(3), 188–194 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jeyakumar, V., Lee, G.M., Dinh, N.: Characterizations of solution sets of convex vector minimization problems. Eur. J. Oper. Res. 174(3), 1380–1395 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dinh, N., Goberna, M.A., López, M.A., Mo, T.H.: Farkas-type results for vector-valued functions with applications. J. Optim. Theory Appl. 173(2), 357–390 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dinh, N., Goberna, M.A., Long, D.H., López, M.A.: New Farkas-type results for vector-valued functions: a non-abstract approach. J. Optim. Theory Appl. 182(1), 4–29 (2019)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Math Systems, vol. 319. Springer, Berlin (1989)CrossRefGoogle Scholar
  19. 19.
    Jahn, J.: Vector Optimization: Theory, Applications, and Extensions. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Hernández, E., Rodríguez-Marín, L., Sama, M.: On solutions of set-valued optimization problems. Comput. Math. Appl. 60(5), 1401–1408 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kuroiwa, D., Tanaka, T., Ha, T.X.D.: On cone convexity of set-valued maps. Nonlinear Anal. 30(3), 1487–1496 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kuroiwa, D.: The natural criteria in set-valued optimization. RIMS Kokyuroku. 1031, 85–90 (1998)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Wang, F., Liu, S., Chai, Y.: Robust counterparts and robust efficient solutions in vector optimization under uncertainty. Oper. Res. Lett. 43(3), 293–298 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Fang, D.H., Li, C., Ng, K.F.: Constraint qualifications for extended Farkas’s lemmas and Lagrangian dualities in convex infinite programming. SIAM J. Optim. 20(3), 1311–1332 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Boţ, R.I.: Conjugate Duality in Convex Optimization. Springer, Berlin (2010)CrossRefGoogle Scholar
  26. 26.
    Jeyakumar, V., Lee, G.M., Dinh, N.: New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J. Optim. 14(2), 534–547 (2003)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Jahn, J., Rauh, R.: Contingent epiderivatives and set-valued optimization. Math. Methods Oper. Res. 46(2), 193–211 (1997)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kuroiwa, D., Popovici, N., Rocca, M.: A characterization of cone-convexity for set-valued functions by cone-quasiconvexity. Set-Valued Var Anal. 23(2), 295–304 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)zbMATHGoogle Scholar
  30. 30.
    Khoshkhabar-amiranloo, S., Khorram, E.: Scalar characterizations of cone-continuous set-valued maps. Appl. Anal. 95(12), 2750–2765 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Huang, X.X., Yao, J.C.: Characterizations of the nonemptiness and compactness for solution sets of convex set-valued optimization problems. J. Glob. Optim. 55(3), 611–626 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lee, G.M., Tuan, L.A.: On \(\epsilon \)-optimality conditions for convex set-valued optimization problems. Taiwan. J. Math. 13(6A), 1787–1810 (2009)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Köbis, E.: On robust optimization: relations between scalar robust optimization and unconstrained multicriteria optimization. J. Optim. Theory Appl. 167(3), 969–984 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Sion, M.: On general minimax theorems. Pac. J. Math. 8(1), 171–176 (1958)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceNaresuan UniversityPhitsanulokThailand
  2. 2.Research center for Academic Excellence in MathematicsNaresuan UniversityPhitsanulokThailand
  3. 3.Department of Applied MathematicsPukyong National UniversityBusanKorea

Personalised recommendations