Advertisement

Identification of Diffusion Properties of Polymer-Matrix Composite Materials with Complex Texture

  • Marianne BeringhierEmail author
  • Marco GigliottiEmail author
  • Paolo Vannucci
Article
  • 33 Downloads

Abstract

The paper deals with the identification of three-dimensional anisotropic diffusion properties of polymer-matrix composite materials with complex texture, based on the exploitation of short-time gravimetric tests. According to the Thermodynamics of Irreversible Processes, the diffusion behavior can be isotropic or orthotropic: for many materials, due to the complexity of the microscopic texture, the principal directions of orthotropy are not known a priori and enter the identification issue. After reviewing some identification methods (proper generalized decomposition) for isotropic and orthotropic material whose orthotropy directions are known, the paper proposes an experimental protocol and an identification algorithm for the full three-dimensional diffusion case, aiming at establishing the 3 coefficients of diffusion along the principal directions of orthotropy and the orientation of the orthotropic reference frame with respect to the sample frame. The identification of the physical properties is done through the minimization of a distance in the space of the physical parameters. The problem being non-convex, the numerical strategy used for the search of the global minimum is a particle swarm optimization, the code adaptive local evolution-particle swarm optimization with adaptive coefficients.

Keywords

Identification Diffusion behavior Optimization method PGD ALE-PSO 

Mathematics Subject Classification

80A23 45Q05 35R30 80M50 90C31 46N10 

Notes

Acknowledgements

This work pertains to the French Government programs “Investissements d’Avenir” LABEX INTERACTIFS (Reference ANR-11-LABX-0017-01).

References

  1. 1.
    Popineau, S., Rondeau-Mouro, C., Sulpice-Gaillet, C., Shanahan, M.: Free/bound water absorption in an epoxy adhesive. Polymer 46, 10733–40 (2005)CrossRefGoogle Scholar
  2. 2.
    Grace, L., Altan, M.: Characterization of anisotropic moisture absorption in polymeric composites using hindered diffusion model. Compos. Part A Appl. Sci. Manuf. 43(8), 1187–96 (2012)CrossRefGoogle Scholar
  3. 3.
    Weitsman, Y.: Fluid Effects in Polymers and Polymeric Composites. Springer, Berlin (2012)CrossRefGoogle Scholar
  4. 4.
    Pierron, F., Poirette, Y., Vautrin, A.: A novel procedure for identification of 3D moisture diffusion parameters on thick composites: theory, validation and experimental results. J. Compos. Mater. 36(19), 2219–43 (2002)CrossRefGoogle Scholar
  5. 5.
    Arnold, J., Alston, S., Korkees, F.: An assessment of methods to determine the directional moisture diffusion coefficients of composite materials. Compos. Part A Appl. Sci. Manuf. 55, 120–8 (2013)CrossRefGoogle Scholar
  6. 6.
    Beringhier, M., Gigliotti, M.: A novel methodology for the rapid identification of the water diffusion coefficients of composite materials. Compos. Part A Appl. Sci. Manuf. 68, 212–8 (2015)CrossRefGoogle Scholar
  7. 7.
    Beringhier, M., Simar, A., Gigliotti, M., Grandidier, J.C., Ammar-Khodja, I.: Identification of the orthotropic diffusion properties of RTM textile composite for aircraft applications. Compos. Struct. 137, 33–43 (2016)CrossRefGoogle Scholar
  8. 8.
    Shen, C., Springer, G.: Moisture absorption and desorption of composite materials. J. Compos. Mater. 10, 2–20 (1976)CrossRefGoogle Scholar
  9. 9.
    Arhonime, M.T., Neuman, S., Marom, G.: The anisotropic diffusion of water in kevlar-epoxy composites. J. Mater. Sci. 22, 2435–46 (1987)CrossRefGoogle Scholar
  10. 10.
    Beringhier, M., Djato, A., Maida, D., Gigliotti, M.: A novel protocol for rapid identification of anisotropic diffusion properties of polymer matrix composite materials with complex texture. Compos. Struct. 201, 1088–1096 (2018)CrossRefGoogle Scholar
  11. 11.
    Vannucci, P.: Anisotropic Elasticity. Springer, Singapore (2018)CrossRefGoogle Scholar
  12. 12.
    De Groot, D.R., Mazur, P.: Thermodynamics of Irreversible Processes. North-Holland, Amsterdam (1962)Google Scholar
  13. 13.
    Glansdorff, P., Prigogine, I.: Structure. Stability and Fluctuations. Wiley, New York (1971)zbMATHGoogle Scholar
  14. 14.
    Muller, I.: Thermodynamik. Bertelsmann, Dusseldorf (1973)zbMATHGoogle Scholar
  15. 15.
    Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)CrossRefGoogle Scholar
  16. 16.
    Powers, J.M.: On the necessity of positive semi-definite conductivity and Onsager reciprocity in modeling heat conduction in anisotropic media. J. Heat Transf. 126, 670–675 (2004)CrossRefGoogle Scholar
  17. 17.
    Nouy, A.: A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 199, 1603–1626 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gonzalez, D., Ammar, A., Chinesta, F., Cueto, E.: Recent advances on the use of separated representations. Int. J. Numer. Methods Eng. 81(5), 637–59 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Chinesta, F., Keunings, R., Leygue, A.: The Proper Generalized Decomposition for Advanced Numerical Simulations, pp. 71–88. Springer, Berlin (2014)CrossRefGoogle Scholar
  20. 20.
    Ghnatios, C., Chinesta, F., Cueto, E., Leygue, A., Poitou, A., Breitkopf, P., et al.: Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion. Compos. Part A Appl. Sci. Manuf. 42(9), 1169–78 (2011)CrossRefGoogle Scholar
  21. 21.
    Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1975)zbMATHGoogle Scholar
  22. 22.
    Carslaw, H.S., Jaeger, J.: Conduction of Heat in Solids. Oxford University Press, Oxford (1959)zbMATHGoogle Scholar
  23. 23.
    Aktas, L., Hamidi, Y.K., Altan, M.C.: Combined edge and anisotropy effects on Fickian mass diffusion in polymer composites. J. Eng. Mater. Technol. 126, 427–35 (2004)CrossRefGoogle Scholar
  24. 24.
    Eberhart, R. C., Kennedy, J.: Particles swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ (1995)Google Scholar
  25. 25.
    Vannucci, P.: ALE-PSO: an adaptive swarm algorithm to solve design problems of laminates. Algorithms 2, 710–734 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Shi, Y., Eberhart, R. C.: Parameter selection in particle swarm optimization. In: Proceedings of 7th Annual conference on Evolution Computation, New York, NY (1998)Google Scholar
  27. 27.
    Ozcan, E., Mohan, C. K.: Particle swarm optimization: surfing the waves. In: Proceedings of IEEE Congress on Evolutionary Computation, Washington DC (1999)Google Scholar
  28. 28.
    Clerc, M., Kennedy, J.: The particle swarm: explosion, stability and convergence in a multi- dimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)CrossRefGoogle Scholar
  29. 29.
    Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inform. Proc. Lett. 85, 317–325 (2003)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Liu, H., Abraham, A., Clerc, M.: Chaotic dynamic characteristics in swarm intelligence. Appl. Soft Comput. 7, 1019–1026 (2007)CrossRefGoogle Scholar
  31. 31.
    Jiang, M., Luo, Y.P., Yang, S.Y.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 102, 8–16 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Hu, X., Eberhart, R. C.: Adaptive particle swarm optimization: detection and response to dynamic systems. In: Proceedings of IEEE Congress on Evolutionary Computation, Hawaii (2002)Google Scholar
  33. 33.
    Yasuda, K., Ide, A., Iwasaki, N.: Adaptive particle swarm optimization using velocity information of swarm. In: Proceedings of IEEE International Conference on Systems, Man & Cybernetics, The Hague, Netherlands (2004)Google Scholar
  34. 34.
    Yamaguchi, T., Iwasaki, N., Yasuda, K.: Adaptive particle swarm optimization using information about global best. Electr. Eng. Jpn. 159, 270–276 (2007)Google Scholar
  35. 35.
    DeBao, C., ChunXia, Z.: Particle swarm optimization with adaptive population size and its application. Appl. Soft Comput. 9, 39–48 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PPRIME Institute, CNRS - ISAE-ENSMAUniversity of PoitiersPoitiersFrance
  2. 2.LMV - UMR8100 CNRSUniversity of Versailles Saint QuentinVersaillesFrance

Personalised recommendations