On the Optimal Prediction of the Stress Field Associated with Discrete Element Models

  • Ada AmendolaEmail author


This work presents an optimized and convergent regularization procedure for the computation of the stress field exhibited by particle systems subject to self-equilibrated short-range interactions. A regularized definition of the stress field associated with arbitrary force networks is given, and its convergence behavior in the continuum limit is demonstrated analytically, for the first time in the literature. The analyzed systems of forces describe pair interactions between lumped masses in ‘atomistic’ models of 2D elastic bodies and 3D membrane shells based on non-conforming finite element methods. We derive such force networks from polyhedral stress functions defined over arbitrary triangulations of 2D domains. The stress function associated with an unstructured force network is projected onto a structured triangulation, producing a new force network with ordered structure. The latter is employed to formulate a ‘microscopic’ definition of the Cauchy stress of the system in the continuum limit. The convergence order of such a stress measure to its continuum limit is given, as the mesh size approaches zero. Benchmark examples illustrate the application of the proposed regularization procedure to the prediction of the stress field exhibited by a variety of 2D and 3D membrane networks.


Force-based discrete elements Continuum limit Convergence order Virial stress Structural membranes 

Mathematics Subject Classification

97N40 01-08 34E13 



The author acknowledges financial support from the Italian Ministry of Education, University and Research (MIUR) under the ‘Departments of Excellence’ grant L.232/2016.


  1. 1.
    Shenoy, V.B., Miller, R., Tadmor, E.B., Rodney, D., Phillips, R., Ortiz, M.: An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method. J. Mech. Phys. Solids 47, 611–642 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Knap, J., Ortiz, M.: An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49, 1899–1923 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Belytschko, T., Xiao, S.P.: Coupling methods for continuum model with molecular model. Int. J. Multiscale Comput. Eng. 1(1), 115–126 (2003)CrossRefGoogle Scholar
  4. 4.
    Liu, B., Huang, Y., Jiang, H., Qu, S., Hwang, K.C.: The atomic-scale finite element method. Comput. Methods Appl. Mech. Eng. 193, 1849–1864 (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Badia, S., Parks, M., Bochev, P., Gunzburger, M., Lehoucq, R.: On atomistic-to-continuum coupling by blending. Multiscale Model. Simul. 7(1), 381–406 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Yang, Q., Biyikli, E., Zhang, P., Tian, R., To, A.C.: Atom collocation method. Comput. Methods Appl. Mech. Eng. 237–240, 67–77 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Yang, Q., Biyikli, E., To, A.C.: Multiresolution molecular mechanics: statics. Comput. Methods Appl. Mech. Eng. 258, 26–38 (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Miller, R.E., Tadmor, E.B.: A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. J. Model. Simul. Mater. Sci. Eng. 17, 053001 (2009)CrossRefGoogle Scholar
  9. 9.
    Tu, Z.C., Ou-Yang, Z.C.: Elastic theory of low-dimensional continua and its application in bio- and nano-structures. J. Comput. Theor. Nanosci. 5, 422–448 (2008)CrossRefGoogle Scholar
  10. 10.
    Fraternali, F., Blegsen, M., Amendola, A., Daraio, C.: Multiscale mass-spring models of carbon nanotube foams. J. Mech. Phys. Solids 59(1), 89–102 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Raney, J.R., Fraternali, F., Amendola, A., Daraio, C.: Modeling and in situ identification of material parameters for layered structures based on carbon nanotube arrays. Compos. Struct. 93, 3013–3018 (2011)CrossRefGoogle Scholar
  12. 12.
    Blesgen, T., Fraternali, F., Raney, J.R., Amendola, A., Daraio, C.: Continuum limits of bistable spring models of carbon nanotube arrays accounting for material damage. Mech. Res. Commun. 45, 58–63 (2012)CrossRefGoogle Scholar
  13. 13.
    Trovalusci, P., Augusti, G.: A continuum model with microstructure for materials with flaws and inclusions. J. Phys. IV 8(8), 383–390 (1998)Google Scholar
  14. 14.
    Trovalusci, P., De Bellis, M.L., Masiani, R.: A multiscale description of particle composites: from lattice microstructures to micropolar continua. Compos. Part B Eng. 128, 164–173 (2017)CrossRefGoogle Scholar
  15. 15.
    Reccia, E., De Bellis, M.L., Trovalusci, P., Masiani, R.: Sensitivity to material contrast in homogenization of random particle composites as micropolar continua. Compos. Part B Eng. 136, 39–45 (2018)CrossRefGoogle Scholar
  16. 16.
    Zhou, Z., Joós, B.: Mechanisms of membrane rupture: from cracks to pores. Phys. Rev. B 56, 2997–3009 (1997)CrossRefGoogle Scholar
  17. 17.
    Nelson, D., Piran, T., Weinberg, S. (eds.): Statistical Mechanics of Membranes and Surfaces, 2nd edn. World Scientific, Singapore (2004)Google Scholar
  18. 18.
    Muller, M., Katsov, K., Schick, M.: Biological and synthetic membranes: what can be learned from a coarse-grained description? Phys. Rep. 434, 113–176 (2006)CrossRefGoogle Scholar
  19. 19.
    Dao, M., Li, J., Suresh, S.: Molecular based analysis of deformation of spectrin network and human erythrocyte. Mater. Sci. Eng. 26, 1232–1244 (2006)CrossRefGoogle Scholar
  20. 20.
    Fraternali, F., Lorenz, C., Marcelli, G.: On the estimation of the curvatures and bending rigidity of membrane networks via a local maximum-entropy approach. J. Comput. Phys. 231, 528–540 (2012)CrossRefzbMATHGoogle Scholar
  21. 21.
    Schmidt, B., Fraternali, F.: Universal formulae for the limiting elastic energy of membrane networks. J. Mech. Phys. Solids 60, 172–180 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fraternali, F., Marcelli, G.: A multiscale approach to the elastic moduli of biomembrane networks. Biomech. Model. Mechanobiol. 11, 1097–1108 (2012)CrossRefGoogle Scholar
  23. 23.
    Kohlhoff, S., Gumbsch, P., Fischmeister, F.: Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos. Mag. A 64(4), 851–878 (1991)CrossRefGoogle Scholar
  24. 24.
    Jones, R.E., Zimmerman, J.A.: The construction and application of an atomistic J-integral via Hardy estimates of continuum fields. J. Mech. Phys. Solids 58, 1318–1337 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Davini, C., Pitacco, I.: Relaxed notions of curvature and a lumped strain method for elastic plates. SIAM J. Numer. Anal. 35, 677–691 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fraternali, F., Angelillo, M., Fortunato, A.: A lumped stress method for plane elastic problems and the discrete-continuum approximation. Int. J. Solids Struct. 39, 6211–6240 (2002)CrossRefzbMATHGoogle Scholar
  27. 27.
    Heyman, J.: The Stone Skeleton. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  28. 28.
    O‘Dwyer, D.: Funicular analysis of masonry vaults. Int. J. Solids Struct. 73, 187–197 (1999)zbMATHGoogle Scholar
  29. 29.
    Kilian, A., Ochsendorf, J.: Particle-spring systems for structural form finding. IASS J. 46(2), 77–85 (2005)Google Scholar
  30. 30.
    Block, P., Ochsendorf, J.: Thrust network analysis: a new methodology for three-dimensional equilibrium. J. IASS 48(3), 167–173 (2007)Google Scholar
  31. 31.
    Block, P.: Thrust network analysis: exploring Three-dimensional equilibrium. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, USA (2009)Google Scholar
  32. 32.
    Fraternali, F.: A thrust network approach to the equilibrium problem of unreinforced masonry vaults via polyhedral stress functions. Mech. Res. Commun. 37, 198–204 (2010)CrossRefzbMATHGoogle Scholar
  33. 33.
    Fraternali, F.: A mixed lumped stress–displacement approach to the elastic problem of masonry walls. Mech. Res. Commun. 38, 176–180 (2011)CrossRefzbMATHGoogle Scholar
  34. 34.
    Greco, F., Leonetti, L., Luciano, R., Trovalusci, P.: Multiscale failure analysis of periodic masonry structures with traditional and fiber-reinforced mortar joints. Compos. Part B Eng. 118, 75–95 (2017)CrossRefGoogle Scholar
  35. 35.
    Skelton, R.E.: Structural systems: a marriage of structural engineering ans system science. J. Struct. Control 9, 113–133 (2002)CrossRefGoogle Scholar
  36. 36.
    Vera, C., Skelton, R.E., Bosscns, F., Sung, L.A.: 3-D nanomechanics of an erythrocyte junctional complex in equibiaxial and anisotropic deformations. Ann. Biomed. Eng. 33(10), 1387–1404 (2005)CrossRefGoogle Scholar
  37. 37.
    Mofrad, M.R.K., Kamm, R.D. (eds.): Cytoskeletal Mechanics: Models and Measurements. Cambridge University Press, Cambridge (2006)Google Scholar
  38. 38.
    Skelton, R.E., de Oliveira, M.C.: Tensegrity Systems. Springer, Berlin (2010)zbMATHGoogle Scholar
  39. 39.
    Fraternali, F., Senatore, L., Daraio, C.: Solitary waves on tensegrity lattices. J. Mech. Phys. Solids 60, 1137–1144 (2012)CrossRefGoogle Scholar
  40. 40.
    Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: a review of mayor applications and findings. Chem. Eng. Sci. 63, 5728–5770 (2008)CrossRefGoogle Scholar
  41. 41.
    Daraio, C., Ngo, D., Nesterenko, V.F., Fraternali, F.: Highly nonlinear pulse splitting and recombination in a two-dimensional granular network. Phys. Rev. E 82, 036603 (2010)CrossRefGoogle Scholar
  42. 42.
    Leonard, A., Fraternali, F., Daraio, C.: Directional wave propagation in a highly nonlinear square packing of spheres. Exp. Mech. 53, 327–337 (2013)CrossRefGoogle Scholar
  43. 43.
    Trovalusci, P., Capecchi, D., Ruta, G.: Genesis of the multiscale approach for materials with microstructure. Arch. Appl. Mech. 79(11), 981–997 (2009)CrossRefzbMATHGoogle Scholar
  44. 44.
    Capecchi, D., Ruta, G., Trovalusci, P.: Voigt and Poincaré’s mechanistic-energetic approaches to linear elasticity and suggestions for multiscale modelling. Arch. Appl. Mech. 81(11), 1573–1584 (2011)CrossRefzbMATHGoogle Scholar
  45. 45.
    Trovalusci, P.: Molecular approaches for multifield continua: origins and current developments. In: Sadowski, T., Trovalusci, P. (eds.) Multiscale Modeling of Complex Materials: Phenomenological, Theoretical and Computational Aspects. CISM (International Centre for Mechanical Sciences) Series, vol. 556, pp. 211–278. Springer, Berlin (2014)Google Scholar
  46. 46.
    Schlaich, J., Schäfer, K., Jennewein, M.: Toward a consistent design of structural concrete. J. Prestress. Concr. Inst. 32, 74–150 (1987)Google Scholar
  47. 47.
    Admal, N.C., Tadmor, E.B.: A unified interpretation of stress in molecular systems. J. Elast. 100, 63–143 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Morante, S., Rossi, G., Testa, M.: The stress tensor of an atomistic system. Cent. Eur. J. Phys. 10(3), 552–559 (2012)Google Scholar
  49. 49.
    Alicandro, R., Cicalese, M.: A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36, 1–37 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Braides, A., Gelli, M.S.: From discrete systems to continuous variational problems: an introduction. In: Braides, A., Chiadò, V. (eds.) Topics on Concentration Phenomena and Problems with Multiple Scales. Lecture Notes of the Unione Matematica Italiana, vol. 2, pp. 3–77. Springer, Berlin (2006)CrossRefGoogle Scholar
  51. 51.
    Schmidt, B.: A derivation of continuum nonlinear plate theory from atomistic models. SIAM Multiscale Model. Simul. 5, 664–694 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Braides, A., Solci, M., Vitali, E.: A derivation of linear elastic energies from pair-interaction atomistic systems. Netw. Heterog. Media 2, 551–567 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Rodin, G.J.: Higher-order macroscopic measures. J. Mech. Phys. Solids 55, 1103–1119 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Schmidt, B.: On the passage from atomic to continuum theory of thin films. Arch. Ration. Mech. Anal. 190, 1–55 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Fraternali, F.: Complementary energy variational approach for plane elastic problems with singularities. Theor. Appl. Fract. Mech. 35, 129–135 (2001)CrossRefGoogle Scholar
  56. 56.
    Fraternali, F.: Error estimates for a lumped stress method for plane elastic problems. Mech. Adv. Mater. Struct. 14(4), 309–320 (2007)CrossRefGoogle Scholar
  57. 57.
    Espriu, D.: Triangulated random surfaces. Phys. Lett. B 194, 271–276 (1987)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Bailiie, C.F., Johnston, D.A., Williams, R.D.: Nonuniversality in dynamically triangulated random surfaces with extrinsic curvature. Mod. Phys. Lett. A 5, 1671–1683 (1990)CrossRefGoogle Scholar
  59. 59.
    Gompper, G., Kroll, D.M.: Random surface discretization and the renormalization of the bending rigidity. J. Phys. I Fr. 6, 1305–1320 (1996)CrossRefGoogle Scholar
  60. 60.
    Discher, D.E., Boal, D.H., Boey, H.S.: Phase transitions and anisotropic responses of planar triangular nets under large deformation. Phys. Rev. E 55(4), 4762–4772 (1997)CrossRefGoogle Scholar
  61. 61.
    Fraternali, F., Carpentieri, G.: On the correspondence between 2D force networks and polyhedral stress functions. Int. J. Space Struct. 29(3), 145–159 (2014)CrossRefGoogle Scholar
  62. 62.
    Baratta, A., Corbi, O.: On the equilibrium and admissibility coupling in NT vaults of general shape. Int. J. Solids Struct. 47, 2276–2284 (2010)CrossRefzbMATHGoogle Scholar
  63. 63.
    Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Boston (1984)zbMATHGoogle Scholar
  64. 64.
    Ericksen, J.L.: On the Cauchy–Born rule. Math. Mech. Solids 13, 199–220 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Gurtin, M.E.: The linear theory of elasticity. In: Handbuch der Physik (Encyclopedia of Physics), VIa/2, pp. 1–295 Springer-Verlag (1972)Google Scholar
  66. 66.
    Adams, R.A.: Sobolev Spaces. Academic Press, Cambridge (1975)zbMATHGoogle Scholar
  67. 67.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM Editions, Philadelphia (2002)CrossRefzbMATHGoogle Scholar
  68. 68.
    Babuska, I., Podnos, G., Rodin, G.J.: New fictitious domain methods: formulation and analysis. Math. Models Methods Appl. Sci. 15, 1575–1594 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    SURF, Visual Numerics, Inc.: Smooth bivariate interpolant to scattered data that is locally a quintic polynomial in two variables. IMSL\(^{\textregistered }\) Fortran Numerical Math Library, Chap. 3. (2007)
  70. 70.
    Fraternali, F., Marino, A., El Sayed, T., Della Cioppa, A.: On the structural shape optimization through variational methods and evolutionary algorithms. Mech. Adv. Mater. Struct. 18, 225–243 (2011)CrossRefGoogle Scholar
  71. 71.
    Novotny, A.A., Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals. Part I: theory in singularly perturbed geometrical domains. J. Optim. Theory Appl. 180(2), 341–373 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Novotny, A.A., Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals. Part II: first-order method and applications. J. Optim. Theory Appl. 180(3), 683–710 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Fraternali, F., Carpentieri, G., Montuori, R., Amendola, A., Benzoni, G.: On the use of mechanical metamaterials for innovative seismic isolations systems. In: Proceedings of the 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2015), pp. 349–358 (2015)Google Scholar
  74. 74.
    Amendola, A., Fabbrocino, F., Feo, L., Auricchio, F., Fraternali, F.: Dependence of the mechanical properties of pentamode materials on the lattice microstructure. In: Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2016), vol. 1, pp. 2134–2150 (2016).
  75. 75.
    Saleem, W., Khan, M.A., Ch, S.R.: Formulation and execution of structural topology optimization for practical design solutions. J. Optim. Theory Appl. 152(2), 517–536 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Achtziger, W.: Multiple-load truss topology and sizing optimization: some properties of minimax compliance. J. Optim. Theory Appl. 98(2), 255–280 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of SalernoFiscianoItaly

Personalised recommendations