Nonsmooth and Nonconvex Optimization via Approximate Difference-of-Convex Decompositions
- 281 Downloads
- 1 Citations
Abstract
We propose an optimization technique for computing stationary points of a broad class of nonsmooth and nonconvex programming problems. The proposed approach (approximately) decomposes the objective function as the difference of two convex functions and performs inexact optimization of the resulting (convex) subproblems. We prove global convergence of our method in the sense that, for an arbitrary starting point, every accumulation point of the sequence of iterates is a Clarke-stationary solution. The given approach is validated by encouraging numerical results on several nonsmooth and nonconvex distributionally robust optimization problems.
Keywords
Nonconvex programming Nonsmooth optimization Lower-\(C^2\) functions DC decompositionMathematics Subject Classification
49J52 49J53 49K99 90C26Notes
Acknowledgements
The authors would like to acknowledge financial support from the Gaspard-Monge program for Optimization and Operations Research (PGMO) project “Optimization & stability of stochastic unit-commitment problems.”
References
- 1.Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math. 9(3), 167–198 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Rockafellar, R., Wets, R.J.B.: Variational Analysis, Grundlehren der mathematischen Wissenschaften, vol. 317, 3rd edn. Springer, Berlin (2009)Google Scholar
- 3.Pflug, G.C., Pohl, M.: A review on ambiguity in stochastic portfolio optimization. Set Valued Var. Anal. (2017). https://doi.org/10.1007/s11228-017-0458-z zbMATHCrossRefGoogle Scholar
- 4.Esfahani, P.M., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Math. Program. 171(1–2), 115–166 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Curtis, F.E., Mitchell, T., Overton, M.L.: A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles. Optim. Methods Softw. 32(1), 148–181 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Ginchev, I., Gintcheva, D.: Characterization and recognition of D.C. functions. J. Glob. Optim. 57(3), 633–647 (2012). https://doi.org/10.1007/s10898-012-9964-6 MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Toa, P.D., Souad, E.B.: Duality in D.C. (difference of convex functions) optimization. Subgradient methods. In: Hoffmann, K.H., Zowe, J., Hiriart-Urruty, J., Lemarechal, C. (eds.) Trends in Mathematical Optimization. International Series of Numerical Mathematics, vol. 84, pp. 277–293. Birkhauser, Basel (1988)Google Scholar
- 8.de Oliveira, W., Tcheou, M.: An inertial algorithm for DC programming. Set Valued Var. Anal. (2018). https://doi.org/10.1007/s11228-018-0497-0
- 9.Toa, P.D.: Exact penalty in D.C. programming. Vietnam J. Math. 27(2), 169–178 (1999)MathSciNetGoogle Scholar
- 10.Tao, P.D., Le Thi, H.A.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)MathSciNetzbMATHGoogle Scholar
- 11.Pang, J.S., Razaviyayn, M., Alvarado, A.: Computing B-stationary points of nonsmooth DC programs. Math. Oper. Res. 42(1), 95–118 (2017). https://doi.org/10.1287/moor.2016.0795 MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Strekalovsky, A.S.: On local search in D.C. optimization problems. Appl. Math. Comput. 255(1), 73–83 (2015)MathSciNetzbMATHGoogle Scholar
- 13.Strekalovsky, A.S., Minarchenko, I.M.: A local search method for optimisation problem with D.C. inequality constraints. Appl. Math. Model. 1(58), 229–244 (2018)CrossRefGoogle Scholar
- 14.Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes. J. Glob. Optim. 68(3), 501–535 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.M.: Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations. J. Glob. Optim. 71, 37–55 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.de Oliveira, W.: Proximal bundle methods for nonsmooth DC programming. J. Glob. Optim. (2019). https://doi.org/10.1007/s10898-019-00755-4 CrossRefMathSciNetzbMATHGoogle Scholar
- 17.Le Thi, H.A., Tao, P.D.: DC programming in communication systems: challenging problems and methods. Vietnam J. Comput. Sci. 1(1), 15–28 (2014). https://doi.org/10.1007/s40595-013-0010-5 CrossRefGoogle Scholar
- 18.Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math. Program. 116(1–2), 221–258 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Hare, W., Sagastizábal, C.: A redistributed proximal bundle method for nonconvex optimization. SIAM J. Optim. 20(5), 2442–2473 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonconvex functions with inexact oracles. Comput. Optim. Appl. 63(1), 1–28 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Karmitsa, N., Gaudioso, M., Joki, K.: Diagonal bundle method with convex and concave updates for large-scale nonconvex and nonsmooth optimization. Optim. Methods Softw. (2017). https://doi.org/10.1080/10556788.2017.1389941 zbMATHCrossRefGoogle Scholar
- 22.Dao, M.N., Gwinner, J., Noll, D., Ovcharova, N.: Nonconvex bundle method with application to a delamination problem. Comput. Optim. Appl. 65(1), 173–203 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Fuduli, A., Gaudioso, M., Giallombardo, G.: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control. SIAM J. Optim. 14(3), 743–756 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Fuduli, A., Gaudioso, M., Giallombardo, G.: A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization. Optim. Methods Softw. 19, 89–102 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Haarala, N., Miettinen, K., Mäkelä, M.M.: Globally convergent limited memory bundle method for large-scale nonsmooth optimization. Math. Program. 109(1), 181–205 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Kiwiel, K.C.: A linearization algorithm for nonsmooth minimization. Math. Oper. Res. 10, 185–194 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
- 27.Kiwiel, K.: Restricted step and Levenberg–Marquardt techniques in proximal bundle methods for nonconvex nondifferentiable optimization. SIAM J. Optim. 6(1), 227–249 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Lukšan, L., Vlček, J.: A bundle-newton method for nonsmooth unconstrained minimization. Math. Program. 83(1–3), 373–391 (1998)MathSciNetzbMATHGoogle Scholar
- 29.Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific Publishing Co., River Edge (1992)zbMATHCrossRefGoogle Scholar
- 30.Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2, 121–152 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Vlček, J., Lukšan, L.: Globally convergent variable metric method for nonconvex nondifferentiable unconstrained optimization. J. Optim. Theory Appl. 111, 407–430 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 32.Mifflin, R.: A modification and extension of Lemaréchal’s algorithm for nonsmooth optimization. Math. Program. Study 17(1), 77–90 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
- 33.Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69(1), 111–147 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.van Ackooij, W., de Oliveira, W.: Level bundle methods for constrained convex optimization with various oracles. Comput. Optim. Appl. 57(3), 555–597 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 35.Noll, D.: Bundle method for non-convex minimization with inexact subgradients and function values. In: Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Théra, M., Vanderwerff, J., Wolkowicz, H. (eds.) Computational and Analytical Mathematics. Springer Proceedings in Mathematics and Statistics, vol. 50, pp. 555–592. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
- 36.Luc, D.T., Van Ngai, H., Théra, M.: On \(\epsilon \)-monotonicity and \(\epsilon \)-convexity. In: Ioffe, A., Reich, S., Shafrir, I. (eds.) Calculus of Variations and Differential Equations. Research Notes in Mathematics, vol. 410, pp. 82–100. Chapman and Hall/CRC, London (2000)zbMATHGoogle Scholar
- 37.Daniildis, A., Georgiev, P.: Approximate convexity and submonotonicity. J. Math. Anal. Appl. 291, 117–144 (2004)MathSciNetGoogle Scholar
- 38.Apkarian, P., Noll, D., Prot, O.: A proximity control algorithm to minimize nonsmooth and nonconvex semi-infinite maximum eigenvalue functions. J. Convex Anal. 16(3–4), 641–666 (2009)MathSciNetzbMATHGoogle Scholar
- 39.Clarke, F.: Optimisation and nonsmooth analysis. Classics in applied mathematics. Soc. Ind. Appl. Math. (1987). https://doi.org/10.1137/1.9781611971309 CrossRefGoogle Scholar
- 40.Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Basic Theory. Grundlehren der mathematischen Wissenschaften, vol. 330. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 41.Borwein, J.M., Preiss, D.: A smooth variational principle with applications to subdifferentiability and differentiability of convex functions. Trans. Am. Math. Soc. 303, 517–527 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
- 42.Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 20. Springer, New York (2005)Google Scholar
- 43.Kruger, A.Y.: On Fréchet subdifferentials. J. Math. Sci. 116(3), 3325–3358 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Kelley, J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.Frangioni, A.: Standard Bundle Methods: Untrusted Models and Duality. Technical Report del Dipartimento di Informatica, TR. University of Pisa, Pisa, IT (submitted)Google Scholar
- 46.de Oliveira, W.: Target radius methods for nonsmooth convex optimization. Oper. Res. Lett. 45(6), 659–664 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.Bello-Cruz, J.Y., de Oliveira, W.: Level bundle-like algorithms for convex optimization. J. Glob. Optim. 59(4), 787–809 (2014). https://doi.org/10.1007/s10898-013-0096-4 MathSciNetzbMATHCrossRefGoogle Scholar
- 48.Ferrier, C.: Bornes duales de problèmes d’optimisation polynomiaux. Ph.D. thesis, Université Paul Sabatier, Toulouse (1997)Google Scholar
- 49.Ferrier, C.: Computation of the distance to semi-algebraic sets. ESAIM Control Optim. Calc. Var. 5(1), 139–156 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
- 50.Beltran, F., de Oliveira, W., Finardi, E.C.: Application of scenario tree reduction via quadratic process to medium-term hydrothermal scheduling problem. IEEE Trans. Power Syst. 32(6), 4351–4361 (2017)CrossRefGoogle Scholar
- 51.Trivedi, P.K., Zimmer, D.M.: Copula modeling: an introduction for practitioners. Found. Trends Econ. 1(1), 1–111 (2007). https://doi.org/10.1561/0800000005 zbMATHCrossRefGoogle Scholar
- 52.Nelsen, R.B.: An Introduction to Copulas. Springer Series in Statistics, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar
- 53.McNeil, A., Nešlehová, J.: Multivariate archimedian copulas, d-monotone functions and \(l_1\) norm symmetric distributions. Ann. Stat. 37, 3059–3097 (2009)zbMATHCrossRefGoogle Scholar
- 54.van Ackooij, W., de Oliveira, W.: Convexity and optimization with copulæ structured probabilistic constraints. Optim. J. Math. Program. Oper. Res. 65(7), 1349–1376 (2016). https://doi.org/10.1080/02331934.2016.1179302 zbMATHCrossRefGoogle Scholar
- 55.Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002). https://doi.org/10.1007/s101070100263 MathSciNetzbMATHCrossRefGoogle Scholar